クリティカルシンキング入門

データで見つける思考の新発見

データ分解で何が見える? 与えられたデータをどのように分解するかによって、見えてくるものが大きく変わることを体感しました。また、グラフに可視化することで、数字だけでは見えない傾向が明確に浮き彫りになることも理解できました。 思考癖に気づく理由は? データを要素別に分解した際、関連しそうなものを安易に結びつけて一つの傾向として捉えてしまう自分の思考の癖に気づきました。本当にその傾向が正しいのかを確認せず、安直に結論を出して解決策を立てるのではなく、その仮説をもとにさらに分解し、複数の切り口から丁寧に検討することが必要だと感じました。具体的には、「who」「when」「where」「how」といった視点から考えることを学びました。 ターゲット分析はどう進む? また、あるホテルでの活動において、ゲストが楽しみながら地球環境や社会に貢献できるようなサービスを考案する際には、ターゲットを定めるだけでなく、既存の客を分析するために今回学んだ切り口が役立つと感じました。例えば、「who」年代別、属性、「where」出身国、「what」目的、「when」時間帯、「why」選択理由、「how」交通手段や情報源などです。 サービス評価のタイミングは? さらに、カスタマーサービスを分析する際にはプロセスの分解を行い、滞在のどのタイミングで満足度が高いのか、また低いのかを理解し、サービス改善に努めたいと思いました。 根拠をもとに提案は? このような視点から考慮することで、事象の解像度が上がり、思いつきでなく根拠をもとにアイディアを提案できると感じます。日々の業務でアイディアを提案する際には、データをどのように分解して仮説を立てたかを説明することが重要だと思いました。また、「事象分解」「変数分解」「プロセス分解」のいずれかの方法が適しているのか、また切り口を5W1Hから考慮するなど、丁寧に思考する癖をつけることが大切だと考えます。

クリティカルシンキング入門

情報を分解して新たな可能性を発見

グラフ化の重要性とは? 分解を行うことで、解像度が向上することを痛感しました。特に、グラフ化の重要性を理解し、視覚的に情報を把握するのは新鮮で面白い体験でした。切り口が見つかると、その観点に注力しやすくなるものの、さらに多様な切り口を考えることも重要です。新たな発見を確定的な答えと見なしすぎず、分解を進めることで結果の変化が生じる可能性も意識するべきだと感じました。手を動かすことで初めて見えないものも浮かび上がり、「見つからなかった」ということ自体も価値のある結果と捉えられる点に気づき、はっとさせられました。 MECEをどう意識する? 分解を行う上で重要なのは、常にMECE(漏れなくダブりなく)を意識することです。これにより、目的に沿った分解を進められます。日常の業務において、分解を実施する際は次のポイントを意識しています。①全体を正しく定義しているか、②分解が目的に沿っているか、③他者からフィードバックを得て、自身の思考の癖を補正することです。 分解の応用例は何か? 具体的には、データが扱われるさまざまな業務に応用が可能です。例えば、備品の在庫管理や発注予測、さらに社内コミュニケーションを活性化するイベントでも有効です。特にアンケート形式でデータを収集する際には、設問設計が非常に重要であり、目的に応じた分析の切り口を試行錯誤しながら模索したいと思っています。 どのように課題を洗い出す? 現状の業務運用における課題を洗い出すためには、データを多様な切り口で分解し、仮説を立てることが欠かせません。特に、MECEを意識し、分析の目的を見失わないようにすることが大切です。備品の在庫管理では、現状データを分解し、傾向を見出すことで在庫の無駄を排除し、適正な発注を図ります。また、社内のコミュニケーションイベントでは、プロセスごとに課題を明確化し、分解した結果に基づいて翌年のアンケート設問設計を見直していく予定です。

マーケティング入門

競合分析で見える自社の強みと課題解決のヒント

自社の強みをどう活用する? 何を売るかについて手当たり次第にお客様の困りごとを探すのではなく、自社の強みを活かせるものを探すことが重要だと改めて気づきました。そのためには、まず自社の強みをしっかり認識することが必要です。自社の強みは競合との比較の中で初めて明確になるため、自社の強みだけでなく競合の強みや弱みもきちんと分析する必要があると感じました。 効果的なヒアリング方法とは? また、困りごとの聞き方についても注意が必要だと再認識しました。「何か困っていることはありませんか?」という聞き方では、ほとんど情報が出てこないことを実際に経験しました。そのため、自ら仮説を立てた上でヒアリングを行うことが重要だと思いました。 産業用コネクタ開発の戦略 自社においては、新製品、具体的には産業用のコネクタの開発を検討しています。そのため、自社と競合の強みを改めて分析したいと思います。また、ヒアリングにおいては、既に一定程度認識しているお困りごとを解決できる製品コンセプトを検討し、ヒアリングシートや説明会を営業部と共有して、業界内の主要なプレーヤーへのヒアリングを実施したいと考えています。さらに、マーケターとして積極的にお客様訪問を重ね、業界のニーズや痛点の確認を進めていきたいと思います。 製品開発のための具体的ステップ 具体的なアクションプランとしては以下の通りです: 1. 現在の製品コンセプトとニーズや痛点を結びつける。 2. 技術部とコンセプトの実現に向けた事前打ち合わせを行う。 3. 実現可能性が確認できた場合、営業部と共にキープレーヤーへのヒアリングを実施する。ヒアリング時には業界の顧客ニーズを解決できる仮説を立てて行う。 4. ニーズの確認が取れたら、製品化に向けた社内検討を本格化させる。 このような取り組みを通じて、より効果的に市場のニーズに応じた製品開発を進めていきたいと思います。

デザイン思考入門

現場の声で磨く課題解決力

共通課題は何だろう? 店舗のオペレーション課題解決においては、単に会議での発言や市場視察の情報だけを頼りにするのではなく、どの店舗でも共通する課題なのかどうかを十分に確認して定義することの重要性を実感しました。 定量と定性はどうなる? そのため、普段から実施しているアンケートなどによる定量分析と、ヒアリングや現場の観察を通じた定性分析を併用することを、これまで以上に意識していきたいと思います。特に、定性分析においてはコーディング手法の活用をすぐに実践する所存です。 ペルソナはどう捉える? また、現状を把握するだけでなく、具体的なペルソナを特定し、ユーザーの感情にまで思いを巡らせることが大切だと感じました。ペルソナをいくつか明確に意識することで、本当に解決すべき課題が何か、その根本的な原因は他にもないかと前提を疑いながら多角的に考える習慣が身についてきました。 課題定義は進む? 今後は自分一人にとどまらず、周囲のメンバーも巻き込みながら課題定義を進めていくつもりです。課題定義のフェーズでは、①問題の本質を捉える、②洞察の整理と可視化、③顧客課題仮説の作成、④ユーザー中心の視点の維持、⑤検証と改善という5つのポイントが重要だと感じました。 潜在課題に気づく? 中でも、カスタマージャーニーマップを活用する点と、顧客課題仮説を作成する際にシンプルで明確な課題文を構築する方法に大きな気づきを得ました。カスタマージャーニーマップはユーザーの行動だけでなく感情の流れにも着目することで、潜在的な課題を浮き彫りにしますし、明快な課題文はまだ気づかれていなかった潜在的な問題に気づく手助けとなります。 アウトプットは十分か? 最後に、ある講師の「学びの深さはアウトプットの量に比例する」という言葉が心に響きました。今後も実務を通じて、積極的にアウトプットを行いながら学びを深めていきたいと思います。

デザイン思考入門

共感が紡ぐ本質の発見

誰のために取り組む? 社内でデータ活用推進を担当する中、どのような人に、どのような目的でコンテンツを活用してもらいたいかを考える必要性を改めて実感しました。今回、デザイン思考における課題定義を学ぶ中で、まず「誰のための取り組みか」を明確にする重要性を再認識しました。各部署で業務状況や意識が異なることを踏まえ、ヒアリング内容に加え、「もしこの人が○○だったら」という仮説的な視点を取り入れてペルソナを作成することで、対象者の背景や課題、感情に寄り添った検討が可能になりました。その結果、リアルな声だけに捉われず、幅広い視点から課題を捉える仕組みづくりの基盤ができたと感じています。 解決策に頼りすぎ? 今回の振り返りを通じて、解決策ありきで考えないことの大切さを強く感じました。業務の中で、つい「このダッシュボードを作れば良い」「この機能を入れれば便利になる」といった解決策から考えがちですが、本当に解決すべき課題は、ユーザー自身も言語化できていない無意識の困りごとである可能性が高いと気づきました。そのため、なぜその現象が起きるのか、背景にはどんな要因があるのかと問い続ける姿勢が、持続的な価値提供につながると実感しています。 本質的な課題の見極め? また、課題定義においては、共感フェーズで得た具体的なエピソードや感情を丁寧に読み解くことが非常に重要だと学びました。単に「この人はこう言っていた」という事実を受け止めるだけでなく、「なぜ自分がそこに共感したのか」「その言葉の裏にある背景や価値観は何か」と考えることで、深い理解につながります。さらに、課題を抽象化して定義する際には、まず具体的な現象を十分に観察・収集し、そこから意味を引き出すことが大切だと感じました。抽象化は便利な反面、現実との乖離に陥るリスクがあるため、具体から出発し共感を手がかりに本質的な課題を見極める力を今後も養っていきたいと思います。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

データ・アナリティクス入門

データ分析とマーケティングが結ぶ新たな気づき

すべての学びは繋がる? 6週間の講義を振り返り、最も印象的だった学びは「すべての学びは結び付いている」ということでした。もともと興味を持っていた分析手法やその評価方法には多くの新しい発見があり、非常に刺激的でした。しかし、分析に基づいて仮説を立て、それを生かすためにはマーケティングの知識が必要だということに気付きました。過去に学んだことと今学んでいることがつながり、新しい視点が得られたこの体験は非常に刺激的でした。 マーケティングとデータ分析の相乗効果 知ったつもりでいたマーケティングに関するフレームワークをデータ分析で活用することにより、学びが独立したものではなく、結び付けることで価値が生まれるのだということを実感しました。この経験が一番の収穫だったと思います。 異動後の目標と実践 講座の受講期間中に営業部門から希望する企画部門への異動が実現しました。異動までにデータ分析やマーケティングに関する学び直しを行いたいと思っています。講座で学んだデータ分析の基礎的な手法は、現在の部署でも十分活用できます。まずは今の部署で可能な分析を行い、学びを実践に移したいと考えています。まずは営業部門の販売実績から現状を把握し、マーケティングのフレームワークを活用して今後取るべき打ち手について考え、同僚と意見を共有したいと思います。 新しい提案とその影響 異動するまでに今回学んだデータ分析手法を用いて、営業部門の現状分析やそれに基づいた仮説の立案を実施したいと考えています。現部署では経験や勘を重視する風潮があり、それ以外の判断基準がない状況です。たとえ私の提案が採用されなくても、新しい考え方の実例を示すことで変化のきっかけとなれば良いと思っています。そしてこの経験、特に反省点を次の部署で生かし、新しい環境でも様々なことに挑戦してみたいと思います。

データ・アナリティクス入門

気づきを得た!ABテストでSNSフォロワー倍増作戦

ABテストの学びを深めるには? 問題の原因を探るためのポイントと、適切な解決策を決定するための手法である「ABテスト」について学びました。 まず、問題の原因を探るためのポイントとして、以下の二つが挙げられます。 1. プロセスに分解すること。 2. 解決策を検討する際には、複数の選択肢を洗い出し、その中から根拠をもって絞り込むこと。 ABテストの手法はどう実行する? 次に、ABテストの手法についてです。ABテストでは、できる限り条件を揃えることが重要です(例えば時間帯や曜日)。具体的なステップは次の通りです。 1. 目的を設定する。 2. 改善ポイントの仮説設計を行う(ABテストの立案)。 3. 実行する。 4. 結果の検証と打ち手の決定を行う。 SNSフォロワー増加策の提案 直近の課題として、所属組織の公式SNSアカウントのフォロワー数増加策にABテストを活用したいと考えました。 具体的な解決案は以下の通りです。 - 目的の設定:フォロワー4000(現在2000) - 検証項目:フォロワーの属性、いいね回数、再投稿回数、テキストの文体、メディアの有無 - 仮説:文体が固くとっつきにくいのではないか - 解決策:ABテストを行い、1週間程度、「ですます調」と「だである調」で投稿の文体をテストする この課題解決案を所属部署に提案します。 問題解決の手順は? 最後に、問題解決の4ステップを説明します。 1. What:問題の明確化→同業他社に比べてフォロワー数が増えない 2. Where:問題箇所の特定→投稿への反応が少ない(いいね、再投稿) 3. Why:原因の分析→投稿頻度が少ない?文体が固い? 4. How:解決策の立案→ABテストで文体を変えて投稿してみる 以上、学んだ内容と計画した解決策について共有させていただきます。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

データ・アナリティクス入門

仮説検証で未来を切り拓く挑戦

仮説の再考は? 仮説の分類について考える際、私は従来「問題解決を過去から見る」観点に主眼を置いていました。しかし、仮説全体を見直すうちに、「結論や未来を予測し、仮定の上、検証する」点には十分踏み込んでいなかったことに気づきました。 視野を広げるとどうなる? そこで、仮説全体を見る際には、結論や未来の予測を含む多角的な視点を持ち、バイアスにならないよう視野を広げて考えることが重要だと感じました。結論、つまりゴールから出発しデータを集めて検証していくものの、その過程で手戻りが発生し、結果として何度もデータを再確認することがあります。こうした経験から「方向性を見いだせて初めて動き出せる」という体験を増やしてみたいと思いました。時間効率を意識することで、普段の行動に留まりがちになりますが、時にはうまくいかないことを試みる勇気も大切だと考えています。うまくいかないことから得られる手戻りや試行錯誤の過程は、生産効率を低下させる一方で、自己を納得させるための貴重な材料にもなります。 根拠に基づく行動は? 行動計画としては、「仮説を立てる」にあたって、数字に基づく根拠やフェルミ推定を活用し、意思決定において経験則に頼らず新しい立ち位置を見つけることを目指します。また、これまで行ってきたお客様の離脱予測を、仮説をもとに見直し、データ収集を通じて有効な改善策を模索していきたいと考えています。 データの真実は何か? さらに、KPI関連指標については、チーム単体での目標達成がデータ分析を経ないままであったことを反省し、達成の要因を深掘りすることで、本当に正しい事業活動を行えているかを検証します。他チームや類似業務との比較を通じて、データ取得し仮説を立て分析を行うことで、一層の改善を図っていくことを目指しています。

データ・アナリティクス入門

データ分析で未来を変える振り返り

分析の本質をどう理解する? 「分析は比較なり」という言葉に触れ、データ分析の本質を理解しました。特に分析の重要な要素を短く表現していると感じ、講座の印象に残っています。具体例では飛行機の比較がありましたが、欠損部分を答えと思ってしまいました。この講座を通じて、すぐに正しい結論を導けるよう、考え方を習得したいと思っています。 分析前の準備は何を意識する? 次に、分析前の「目的」と「仮説」が重要であることを学びました。これまでは仕事の中でしばしば「分析しておいて」と言われ、提案書の内容やグラフの色選びで迷うことが多くありました。これらの悩みの原因は、分析の目的や仮説の前提が欠けていたことに気づきました。この気づきにより、目の前の作業に集中するのではなく、前提意識を持って取り組むことで、提案書の質やクライアントへの説得力が大きく改善されると感じました。 理想の分析へどう向かう? 「言語化・教訓化・自分化」の実践においては、理想の姿を描く際に不足を感じ、反省しました。本講座を通じてこれを意識的に学び、活かしたいと思います。また、内部環境や外部環境のデータ分析でこれらの考えを活用できると感じました。 必要なデータはどう見つける? まず、データ収集の場面では、市場やクライアントの会社を分析時に、どのデータが必要か考えることができます。クライアントに提供するデータについて考える場面にも役立つでしょう。 提案書作成で重要なポイントは? 分析前に重要なのは、「目的」と「仮説」であり、提案書へ表現する際には、明確な目的に基づいて、適切なグラフや色の選択を行うことが大切です。また、分析を進める間にも都度結果を確認し、方針の変更がないかチェックすることで、目的に沿った貴重な分析を行いたいと考えました。

クリティカルシンキング入門

イシューで見える道筋と組織の力

イシューの特定はなぜ重要? 課題に対する「イシュー(本質的な問い)」を特定し、具体的にした上で課題解決に向けたアクションを考えることが大切だと学びました。イシューが定まっていないと、自分自身も周囲も何をどのように対応すべきかが分からなくなります。また、問いの特定は組織全体で共有されているべきであり、過去には否定や修正を恐れて報連相を避けていたことを反省しています。 解決策をどう導く? 適切なイシューが定まった時には、解決策(仮説)を検討し、ゴールまでの道筋が自然と見えてくると感じました。この経験から、イシューや目的の設定を意識しないまま目標や手段を決めていた過去の自分に気づき、反省しています。 関係者とはどう連携する? ありたい姿を目指すためには、イシューを関係者全員で認識し合った上で具体的な対応策を考える必要があります。イシューの設定には自分の仮説も必要ですが、相手の経緯や実態を確認しながら進めないと、実施可能なレベルから乖離する恐れがあります。相手の期待や希望が主観的な要素を含む場合は、客観的な内容に戻す意識も重要です。 課題解決のためのゴール設定 課題解決には、スタート時に明確なゴール(目的・目標)が設定・共有されていることが必要です。途中で手段の変更が必要となる場面もありますが、目的・目標がしっかり定まっていれば、臨機応変に最善のものへと変更できます。 納得の資料作成とは? 自己満足のためではなく、組織のための課題解決を意識するよう心がけます。また、相手を説得するためではなく、相手が納得してくれる資料を作成することが大切だと感じました。思考や内容をまとめるには、関連情報を調査して内容を整理し、紙にラフな図面を描いてからまとめることが効果的だと実感しました。

「気づき × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right