クリティカルシンキング入門

図と文章で魅せる資料づくり

伝える手段は適切? まず、伝えたい内容をはっきりさせるために、文章だけでなくグラフや図なども目的に沿った形で用意する必要があると感じました。伝え手がしっかり情報を受け取ってくれるよう、相手の立場を考慮しながら書くことが重要ですが、文章が長くなりがちな点は適切な分量でまとめる工夫が必要です。 経験をどう活かす? メールやチャットで文章を作成する経験が豊富なため、そのスキルを活かして情報を整理し、伝えたい内容を漏れなく書き出す方法を試行錯誤する必要があると感じています。 グラフで伝わる? また、これまでは図を使った説明には慣れていましたが、数値から適切なグラフを作成する経験が少なく、少し苦手意識があります。今後はグラフも併用して情報を提示し、より良い資料作りができるよう、手本となる良質な資料や事例を探していこうと思っています。

データ・アナリティクス入門

実践で変える!問題解決の第一歩

試す手法は何だろう? 問題の要因がある程度明確になったら、試しやすい手法で課題解決に向けた取り組みを実際に試すことが重要です。たとえば、既存の手法と定量的に比較できるA/Bテストのような方法を設計し、実践することが望まれます。 改善はどう実現する? また、課題の分析だけで満足せず、実際に改善を施して目的を実現することが肝要です。データ分析を行う際には、最終的に何を実現したいのかという目的を常に念頭に置く必要があります。 仮説はどう組み立てる? 一方、データ分析の手法に囚われ過ぎると、単にデータを出すことに多くの時間がかかり、問題解決に辿り着かない恐れがあります。したがって、まずは問題の要因を特定し、その後、有識者とのディスカッションや壁打ちを通じて、改善のための仮説を迅速に立案・実行できるように取り組むことが大切です。

クリティカルシンキング入門

見える!MECEで課題解決のヒント

MECEとはどう考える? 今週の学びは、MECEの考え方と切り口の作り方についてでした。MECEとは、全体を定義し、もれなく重複なく切り分けることで、目的に沿った視点で事象を分解し、問題の所在を把握する手法です。 どんな切り口を使う? 具体的には、層別分解、変数分解、プロセス分解という3つの切り口が挙げられます。業務改善の課題分析に活用する際、これらの方法を組み合わせることで、従来のプロセス分解のみでは見落としがちなポイントを捉えることが可能になります。 問題解決の糸口は? 従来はプロセス分解で分析を行っていたため、問題点が多い場合にどこから手をつけるべきか迷うことがありました。しかし、まず解決すべき問いを明確にした上で、層別分解や変数分解を取り入れることで、目標に沿った形で課題を整理できると感じました。

データ・アナリティクス入門

目的と課題を見極める!ビジネス成功の鍵

分析の目的を再確認するには? 分析は、目的があって初めて意味を持つことを再認識しました。ビジネスパーソンの価値は、会社の目的や日々の業務の課題を、いかに効率的かつ低コストで解決できるかにかかっていると考えます。 課題共有の方法は? まだ具体的な業務への分析の活用イメージはありませんが、まずは目的や課題をしっかりと定めることが重要です。特に、その課題が他者からの依頼である場合、最終的に得たいゴールを詳細に明確にし、目的や課題を共有するために議論を重ねることが必要です。 新規ビジネスの土台を整えるには? 新規ビジネスを検討する際には、まず会社や部署の目的やゴール、現時点での課題を正確に把握することを重視したいです。その土台が整った上で、各種フレームワークやツールを活用した分析に進むことができると考えています。

リーダーシップ・キャリアビジョン入門

伝え方工夫が未来を創る

毎日の努力の意味は? 一足飛びの変化は望めず、日々の地道な努力が結果につながると改めて実感しました。これまでに業績評価の面談を何度も経験してきましたが、相手や内容が異なるたびに伝え方も変える必要があり、その都度試行錯誤してきたと感じます。特に厳しい内容を伝えるときは、常に「相手の成長」を念頭に置き、目的を見失わないよう注意しています。 どうして寄り添う? 業績評価面談だけでなく、1on1や気軽な相談にもこの考え方は活用できると感じました。どうしても結論を急ぎがちになりますが、まずは相手の気持ちに寄り添い、成長を支援するために最適な方法を考えながら対応することが大切だと実感しています。 キャリアをどう見る? 今後は、皆さんがどのようにご自身のキャリアを描いているのか、ぜひお伺いしてみたいと思います。

データ・アナリティクス入門

目的と数字が織る成功のヒント

数字の真意は何? この講座では、まず常に目的を意識することの大切さを学びました。数字そのものを見るのではなく、数字が何を意味するのかを瞬時に理解し、その上で適切な比較や分析を行うポイントを明確にすることが重要だと感じました。基本的な枠組みを意識し、それを習慣化することで、数字を正確に捉え、的確な意思決定につなげることができると実感しました。 分析と予測はどう? また、担当するサービスの現状分析や戦略立案のプロセスにおいても、単純に数字を追うのではなく、目的に基づいた各数字の解釈とその比較が不可欠であると学びました。さらに、来期の市場や売上予測に向けた取り組みでは、具体的な市場データが限られている中で、アクセス可能なデータをもとに市場の傾向を予測し、現状分析から将来の売上を導き出す方法の重要性を感じました。

データ・アナリティクス入門

ゼロから攻略!知識整理とデータの力

ゼロからどう始める? ケーススタディーに取り組む際、これまでのような指針がない状態でゼロから考えると、どこから手をつけたらよいのか迷ってしまうことが多いと感じました。そのため、どの状況でどの分析手法が有効なのかを再度整理し、自分の知識や経験を明確にしておくことで、このハードルを乗り越えられると考えています。 業務の効果をどう見る? また、日々の業務では求められるKPIの達成に向けたマネジメントが中心となりがちです。その中で、現在の活動が本当に目的に沿ったものであるか、またはより大きなインパクトを与える方法はないか、成功しているチームがどのような行動を取っているのかを考えるようになりました。そこで、データ分析を用いて客観的な視点からその効果を示すことで、より効果的な業務の進め方を模索していきたいと思います。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

データ・アナリティクス入門

仮説で拓く多角的学びの扉

仮説の留意点って何? 仮説立ての留意点として、まずは複数の仮説を立てることが重要だと感じました。一つの仮説だけで検証を進めると、偏りが生じる恐れがあるため、要素を網羅する視点から複数の仮説を考える必要があります。ただし、全てに多くの時間を割くわけにはいかないため、効率的かつ筋の通った仮説をたてるための思考訓練が求められると実感しました。 フレーム活用の意義は? また、フレームワークの活用については、単に使うことを目的にするのではなく、思考の偏りや抜け漏れを減らす手段として活用できると感じています。何が原因かを探る際に、一つの仮説に固執して検証と修正を繰り返す方法は非効率であるため、あらかじめ複数の視点から網羅的に仮説を立てた上で検証していく姿勢が必要だと考えています。

戦略思考入門

日常に輝く戦略的な一歩

戦略と自己分析のポイントは? 戦略的思考は、日常生活の中に当たり前に存在するものだと実感しました。これまで「とっつきにくい」と感じていた部分が解消され、明確なゴールを設定し、限られたリソースの中で最速かつ最短の方法で目的に向かうための行動計画が重要だと理解できました。その過程で、自分の強みや他人との違い、つまり独自性を常に意識することの大切さも学びました。 実践計画はどう組み立てる? 新規受注を獲得するためのアクションプランを策定する際は、まず自社の優位性や他社との差異を考慮した情報収集から始めました。得られた情報をもとに仮説を立て、実施すべき項目の取捨選択を行いました。これにより、不要な手戻りを最小限に抑え、効率よく迅速な成果に結びつけることを目指しました。

リーダーシップ・キャリアビジョン入門

若手育成でプロジェクト成功への道

仕事を任せる重要な理由は? 仕事を任せる際は、まずその背景や目的を伝えた上で一度任せてみることが重要です。そして、適切なタイミングで進捗を確認し、必要に応じて軌道修正を行いながら最終形を目指します。振り返りも定期的に行い、良かった点や課題となった点を整理することが大切です。 若手へのアプローチは? モチベーションの上がり方は個人によって異なるため、それぞれに合ったアプローチを心がける必要があります。特に新入社員や若手メンバーに対しては、この方法が効果的に活用できそうです。DX推進部に異動したことで若手メンバーとの関わりが増え、自分がまとめ役になることが多い中で、これらの方法を実践することでメンバーの成長とプロジェクトの成功に貢献できると感じています。

データ・アナリティクス入門

あなたも変われる学びの瞬間

データをどう活かす? 分析を行う際は、常に目的を意識しながらデータと向き合うことが基本です。データは単なる数字ではなく、素材と捉え、適切な調理方法や飾り付けで仕上げるように結果の表現手法を工夫する必要があります。各データの特性に合わせた分析プロセスを経ることで、他社にもわかりやすく咀嚼・理解される結果を得ることができます。 サポート状況はどう? また、作成されたサポートケース数の増減やカスタマーサーベイの結果を、製品、顧客、担当エンジニアなど複数の要素を組み合わせながら分析します。こうした取り組みによって、サポートチームが健全にオペレーションできているかを確認し、もし課題が見つかった場合には、その解決に向けた具体的なプランの策定も行います。
AIコーチング導線バナー

「目的 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right