データ・アナリティクス入門

分析で見える明日のカタチ

分析の目的は何? 分析とは、物事を具体的に明確化し、より良い意思決定へ結びつけるための手法です。より良い意思決定を行うには、まず目的をはっきりと定め、その達成に向けた具体的な比較対象や評価基準を設けることが重要です。 比較の意図は? 目的に沿った比較対象を設定することで、分析結果の見せ方にもメリハリが生まれ、伝えたい意図を明確に示すことができます。データの比較やグラフの工夫により、情報を読みやすく、効果的に伝えることが可能となります。 事例の意味は? たとえば、人事部門におけるデータ活用事例としては、以下のような取り組みが考えられます。制度導入効果の検証では、退職率や従業員満足度を過去の実績と比較し、制度の効果を測ります。入職・退職の動向把握では、社内や業界全体のトレンドを把握することが重要です。また、配置や異動の最適化、研修やスキル管理、エンゲージメントの可視化といった分野でも、データを基にした分析が行われています。 退職率の分析は? 具体的に退職率の分析に取り組む場合、まず上司との認識を合わせ、分析の目的を明確にすることが必要です。目的としては、人材の流出抑制や制度改革の効果検証、さらには業界・社内の現状把握などが挙げられます。 比較基準はどこ? 次に、自社内の過去の実績や、制度変更前後のデータ、同業界・同地域・同規模における最新のトレンド、さらには年齢や勤続年数といった属性別の変動など、具体的な基準を設定して比較を行います。 伝達方法は? さらに、複数のグラフや推移グラフ、色付けやサイズ変更などを用いて、分析結果の意図をより明確に伝えることが求められます。このような取り組みを通して、目的に沿った分析を進めることが、より良い意思決定へとつながっていきます。

クリティカルシンキング入門

数字の見方が変わる!グラフの魔法

数字を視覚化するポイント 数字の分解について、私は4つの大きな学びがありました。 第一に、数字を目で見るだけではその差が分かりづらいという点です。グラフにして視覚的に確認することで、数字の差や傾向が見えてきます。また、複数のデータをグラフ化して掛け合わせて見ることにより、それまで見えていなかった部分も知ることができます。 グラフ作成のコツは? 第二に、グラフを作成する際に機械的に5や10で刻んでしまいがちですが、そのグラフの目的に合わせて刻み幅を考えることが重要です。顧客層であれば、学生と社会人を意識した年代で分けるなどの工夫が必要です。 多様な切り口で分析するには? 第三に、数字を様々な切り口で分解することで傾向をより詳しく知ることができます。逆に、細かく分解しないまま分析を行うとミスリードにつながる可能性があります。 MECEの活用法を知る 最後に、MECEを使って漏れなくダブりなく分解することが大切だということです。まず全体を定義してから、目的に合わせた分解方法を考えることが必要です。 さらに、留学プログラムの参加者の分析(地域別、性別、年齢別、分野別など)や助成金の配分、アンケートや提出物の回収の際の分析(期日までに全員回収するのは難しいため、回答期日の分布を分析して効果的なリマインドタイミングを導き出す)にも、今回学んだ数字の分解方法が活用できると感じました。 学びを実践でどう活かす? 今週学んだ内容を改めてノートに書き起こし、職場で確認できるように目に見えるところに置く。実際に数字を分析する機会はなかったが、1つの留学プログラムで複数の切り口を考えて分解し、得られた結果を同僚と共有することで、実践的なスキルアップにつなげることができると思いました。

戦略思考入門

戦略的思考で未来の組織像を描く

戦略的思考の本質は? 「戦略的思考」とは、適切なゴールを定め、そのゴールに向かって最速かつ最短のルートを描いて到達することを目的としています。これは仕事や日常生活においても自然と実践されていることであり、そのような例を考えることで経営戦略がより身近なものと感じられます。この手法は社内でも効果的に利用できるでしょう。 演習で気付いた点は? 実践演習での設問1について、考えたつもりでしたが、「再考した方が良い」というAIからのメッセージがありました。この経験を通じて、今後の学習においてどのように改善できるかを考えていきたいと思います。 目標の具体化は? まず、目指すべきゴールを明確にすることが重要です。例えば、将来どのような組織にしたいのかを明確にし、それを来年の組織目標に反映させます。これは現在の組織に課せられた役割を理解し、将来の組織像と結びつけた目標を策定し、社内で共有することから始まります。 やるべきことは何? 次に、何を行うべきか(やるべきこと)と何をしなくて良いか(やらなくて良いこと)を明確に選択します。自組織の業務内容を正確に設定し、必要なタスクのみを選択し、顧客対応や製品開発においてもその意義と方法を整備し、業務の効率化を目指します。 独自性をどう発揮? さらに、他社が真似できない独自性を持つことも重要です。例えば、顧客の声を効果的に収集し、常に顧客の意見を反映させる仕組みを整備することで、製品開発や顧客対応において独自の強みを発揮します。そして、その強みを社外にも積極的に情報発信し、社会貢献の一環として市場の活性化に努めます。 このような取り組みを通じて、自組織および顧客を巻き込んだ社会貢献活動を推進し、国内市場において更なる成長を目指します。

リーダーシップ・キャリアビジョン入門

人材育成とエンパワメントで変わるリーダーシップ

リーダーの役割とは? WEEK01〜05を通して学んだことについて。 私にとって不足していた視点は、リーダーとしての人材育成の観点でしたが、本講座を受講することで大きな収穫がありました。これまでは、人材育成とは仕事の方法を教えることだと誤解していましたが、変化や競争が激しい現代においては、部下が自ら考え行動できるように促すことが重要であると学びました。その手法としてエンパワメントがあることも理解しました。 フィードバックの役割を知る ライブ授業で学んだ評価のフィードバックの目的も同様に、会社が期待する役割を伝えることで、メンバーのモチベーションを向上させ、自己成長を促すことにあります。これにより、会社に貢献し、成果を上げるチームを作ることがゴールとされています。 モチベーションを高めるには? 能力があるにもかかわらずモチベーションの低いメンバーや、チームの成果に十分貢献できていないメンバーが一定数存在しています。そのような人々に対して、どうアプローチし、チーム全体のレベルを上げていくかについて、これまでの学びを活かしながら考えたいと思います。 適切な仕事の振り方を考える メンバー全体のパワーをフル稼働させるためには、頼りがちなメンバーにばかり仕事を任せるのではなく、敢えて機動力が低いと捉えられているメンバーにも適切な仕事を振ることが重要です。その際、環境要因と適合要因を考慮し、本人にとって少し難易度の高いレベルの仕事を任せてみます。それでも仕事の進捗が期待通りでない場合は、その人が抱えている障害やモチベーションを下げる要因を冷静に分析し、適切なアプローチを取りたいと思います。現在任されている大きなプロジェクトを推進しながら、これらのことを実践してみます。

データ・アナリティクス入門

データ分析の基礎から見直す重要性

比較対象を誤解することの影響は? 分析の基本は比較にあります。特に、比較する対象が「類似性の高いもの同士(Apple to Apple)」であることを意識する必要があります。これまで自身で行ってきたデータ分析において、その認識が誤っていたと感じました。しばしば「異なるもの同士(Apple to Orange)」を比較しようとしていたことに気づいたのです。 データ作成の目的を明確にするには? また、データ作成の際には、まず「目的」を明確にすることが重要であると学びました。ライブ授業で問題に取り組んだ際、大切なポイントを見落としていたことがありました。今後、データ分析を行う際には、まずその分析の目的を再確認し、その上で分析を進めていきたいと思います。 仮説を線で考えることの重要性 さらに、仮説立てに関しても、全体像を広く理解し、点ではなく線で考えることが重要です。これにより、いくつかの仮説をより具体的に報告できるよう努めたいと思います。特に、SEOに関わる数値分析や会員登録までのユーザー動線の見直しに活用できると感じています。 効果的なデータ分析方法とは? データ分析の目的としては、以下の点に注意したいと考えています。 ・さまざまなタイプのデータの特性と、陥りがちな分析の落とし穴に注意する。 ・定量データを用いた分析の重要性を認識し、その活用を図る。 比較と改善のためのディスカッションの重要性 最近は、コンペティターのメディアとの比較や、ユーザー登録導線の参考メディアやランディングページと自社サービスの比較を十分に行えていませんでした。これを改善するため、チームメンバー全員でグループディスカッションを行い、検証結果を導き出す方法を取りたいと思います。

クリティカルシンキング入門

相手の視点で磨く企画力

思考をどう見直す? クリティカルシンキングとは、自分自身の思考を客観的にチェックする「もう一人の自分」を育てることです。常に目的を意識し、自己の思考の癖に気づいて客観視することで、結論に達した後も「ほかに懸念点はないか」と問い続ける姿勢を持つことが求められます。 視点の偏りはどうして? これまでの自分の思考パターンでは、企画提案の際に自分の視点のみで物事を考えていたため、目的が曖昧になりがちで、また自らの経験に頼った偏った意見になってしまうことが多く、十分な検討を行えないというフィードバックを頂くことが多々ありました。これは、上司や役員の視点や関心事を十分に取り入れずに議論を進めていたためだと感じています。 目的をどう再考する? 今後は、まず企画の目的を自分だけでなく、提案相手の立場からも捉え直すことを心がけます。具体的には、提案前に相手の思考の特徴や大切にしているポイントを把握し、企画に対する懸念点を洗い出しておくことが重要です。これにより、提案が受け入れられる可能性が高まると考えています。 伝え方はどう工夫? また、プレゼン資料を作成する際には、伝えたい内容をただ羅列するのではなく、相手の立場に立ち、どの情報があれば納得してもらえるかを考えながら構成していくつもりです。プレゼンの目的を改めて確認し、相手に伝わる表現方法を工夫することで、より効果的なコミュニケーションを目指します。 壁はどう乗り越える? 役員や部長陣に提案する際、相手の視点に立って考えようとしてもどうしてもうまくかみ合わず、重要な点を見落としてしまうこともあります。皆さんも似たような壁に直面されたこと、そしてそれをどのように乗り越えられたのか、ぜひ教えていただければと思います。

クリティカルシンキング入門

問い続けた日々の気づき

自問自答する意味は? クリティカルシンキングでは、知識を実務に活かすための思考力を磨くことが重視されています。瞬発力と持久力を合わせ持つ必要があり、自分の考えには必ず偏りが生じ、無意識のうちに制約を設けてしまうため、常に自問自答する姿勢が求められます。 思考の幅を広げる秘訣は? また、視点、視座、視野という3つのアプローチを通じて思考の幅を広げることが重要だと学びました。頭の中でロジックツリーを効果的に活用し、MECEの原則に基づいて情報を整理する方法も実践しました。帰納と演繹を用いることで、抽象的な概念と具体的な事例を行き来するトレーニングが、主観から客観へとシフトするきっかけとなります。 動画学習の問いかけは? さらに、動画学習では3つの基本姿勢が紹介されました。常に目的を意識すること、誰にでも思考のクセが存在するという前提を持つこと、そして絶えず問い続けることです。「だから何?」「なぜ?」「本当に?」と自分に問いかけ、思考を言語化し、経験を教訓へと変えるプロセスが、基礎となるコミュニケーション力と問題解決力を養うと理解しました。 論理表現をどう磨くか? 実践面では、経営会議でのプレゼンテーションや、上司との議論、部門・部下への意見のブレークダウンの際に、瞬発力と持久力を兼ね備えた論理的な表現が求められています。そのため、日々、自分の考えに偏りがあることを認識し、自己批判の視点を持って反復トレーニングに取り組む必要性を感じています。 仲間と意見交換は? しかし、持久力や論理展開力を瞬発的に実践する感覚や、成長を実感する体験は、まだ十分に得られていません。この点について、同じ課題に取り組む仲間たちと意見交換ができればと考えています。

アカウンティング入門

カフェ経営で実感!P/Lの真実

カフェの価値をどう捉える? 今週は、あるカフェの業態や価値提供をテーマに、P/L(損益計算書)の構造を実感しながら学ぶことができました。各費用がどの勘定科目に分類されるのかを考える過程で、売上、原価、販管費、そして営業利益といった要素がどのようにつながっているのかを具体的に理解できました。また、単なるコスト削減が必ずしも利益向上に結びつかず、顧客が求める価値を損なう可能性もあるという重要な視点に気づくことができました。つまり、費用削減自体が目的ではなく、提供する価値を維持・向上させるための経営判断として捉えることの大切さを学びました。 数字で業務とどう繋げる? 私の業務はデジタルマーケティングとプラットフォーム運用が中心で、普段はROI、CVR、MAU、広告効果といったマーケティング指標を使って判断しています。このため、会計上の費用分類や損益構造と直接つながりにくい面がありましたが、固定費・変動費という視点で費用を整理し、投資効果を損益計算書の観点から捉える考え方は、今後の意思決定の精度向上に非常に有効だと感じました。今後は、ベンダー契約やプラットフォーム更新の際に、見積内容を費用構造の観点から分析し、財務部門と共通の言語で議論できるように努めたいと思います。完璧な会計スキルを追求するのではなく、数字で物事を考える習慣を身につけ、段階的にP/Lの視点を業務に取り入れていくことが、今回の学びの最も実践的な成果だと考えています。 他部署の事例はどう見る? また、経理や生産部門以外で、P/Lの数字分析を業務に活用している、またはこれから取り入れようとしている方がいらっしゃれば、どのような方法で実践されているのか、具体的な事例や工夫についてお話を伺えればと思います。

データ・アナリティクス入門

仮説から挑む数字の物語

仮説はどこから来る? 分析の基本は、まずさまざまなデータを比較することにあります。細かなデータやグラフを確認する前に、自分なりの仮説を立てることが大切だと感じました。 3つの軸は何が違う? ここでは「プロセス」「視点」「アプローチ」という3つの軸が重要です。プロセスでは、目的を明確にし、仮説を立て、データを収集して、その仮説を分析により検証します。視点については、インパクト、ギャップ、トレンド、ばらつき、パターンなどに着目します。そしてアプローチとして、グラフや数字、数式を活用する方法が挙げられます。 可視化で何が分かる? 比較のための可視化には、数字に集約する方法、目で見て把握できるようグラフ化する方法、さらには数式にまとめる方法があり、状況に応じて適切な手法を選ぶことが効果的です。 代表値はどう見る? また、データを見やすくするためには「代表値」と「分布」を確認することがポイントです。代表値には単純平均、加重平均、幾何平均、中央値などがあり、ばらつきを把握するには標準偏差が有用です。特に、95%のデータが含まれるという2SDルールは、分析の信頼性を判断する際に役立ちます。 ノーム値は意味ある? クライアントのノーム値を算出して、予算シュミレーションに活用する手法も魅力的です。さらに、業界ごとにどの枠が効果的か比較検証することで、より適切なアプローチを模索することが可能だと思います。 実数値で検証できる? 実際のデータを利用してノーム値を算出する試みは、非常に価値があると感じます。社内にある関連データの算出方法や分析手法を参考にしながら、実数値での検証を進めることで、より実践的な知見が得られるでしょう。

リーダーシップ・キャリアビジョン入門

リーダーシップでチームを育む方法

リーダーシップをどう育むか? 仕事を任せることは、リーダーシップを発揮する上で極めて重要です。まず、自分に余裕を持ちながら、相手を理解するための努力が求められます。具体的には、観察や柔らかい雰囲気での対話を通じて、相手の本音を引き出すことが重要です。こうしたコミュニケーションを通じて、適切な仕事を任せることで、メンバーの成長とやる気を引き出すことができます。単に仕事を丸投げするのではなく、メンバーが自律的に動けるよう環境を整え、問題点を自分で見つけ、必要なスキルを開発する機会を提供することが大切です。 新しい期間の始まりに備えるには? 新しい期間が2月から始まります。チームミーティングでは、組織のビジョンや課題、目的、目標、方向性を丁寧に伝え、各メンバーが自分の目標を設定できるように支援します。Hさんには、目標設定が曖昧にならないよう6W1Hを意識するよう促します。Yさんには、数字だけでなく制度の見直しや業務改善の重要性を伝え、理解を深める時間を設けます。Oさんには、少し背伸びすれば手が届く目標を設定できるよう支援します。Sさんには、新しい仕事の意義や担当する理由を説明しつつ、本人の意見を聞きながらコミットメントを高めていきます。 メンバーの目標設定を成功させるには? 余裕を持つことも重要です。リーダー1年目は業務に追われ、思うようなマネジメントができませんでした。そのため、メンバーの目標計画を立てる前に1on1を実施し、彼らの本音を知る機会を作ります。仕事を任せる意義や目的を納得いくまで伝え、その上でメンバー自身に目標シートを作成してもらいます。こうしたプロセスにより、メンバーは自ら設定した目標に対する達成意欲が向上し、コミットメントが高まります。

データ・アナリティクス入門

問題解決力を磨く成長の一歩 業務改善で未来を切り拓く

どう成長体験を感じた? ライブ授業を受講することで、初回の自分と比べ、問題解決のステップをどのように構築すべきかを未熟ながらもイメージできるようになり、成長を実感しました。講座全体を振り返る中で、自分が何を学んだのかを再認識し、理想の姿を描いたうえで現状とのギャップを把握しました。このプロセスにより、問題解決のステップを具体的に理解し、自己成長にも応用できるという確信を得ることができました。 業務目的は明確か? 原価登録業務の効率化と適正な登録タイミングの実現に向けて、改善すべき点を明確にしようと考えています。まずは、業務の目的をはっきりと認識することが重要です。自分が担当している業務だけでなく、関係全体の目的や役割を確認し、現状の状態を数値などで正確に捉えるよう努めます。その上で、目的に沿った理想の業務フローを描き、現状とのギャップを明確にすることが不可欠です。 どんな対応が必要? これを実現するために、業務フローを細かく分解し、各工程を前のステップと比較しながら問題箇所を特定します。そして、どのような対応が必要か仮説を立て、検証を進める計画です。業務の目的を達成できるフローを構築するため、必要なデータの取得方法や精度についても、関係者と十分に議論しながら取り組むことが大切だと感じています。 データ分析は適切か? また、データを収集する際には、盲目的に数値を追い求めるのではなく、あらかじめ立てた仮説に基づいて精査する必要があります。複数のフレームワークを活用しながら仮説を検証することで、思い込みによる誤った方向性に陥らないよう注意しています。こうしたプロセス全体が、業務上の問題を解決し、登録業務の効率化に大きく寄与すると考えています。

データ・アナリティクス入門

ABテストで効果を最大化する方法とは?

問題解決ステップの理解をどう深める? 問題解決の4つのステップについて学んだ中で、特にWhy(原因分析)とHow(解決方法の立案)、そしてその手法としてABテストについて理解が深まった。ABテストはシンプルで運用や判断がしやすく、低コスト・低工数・低リスクで実行可能なため、非常に活用しやすい。実施の際には、目的設定、改善ポイントの仮説設計(何でも変えるのではなく、意図を持って比較しやすくする)、実行(十分なデータ量を確保)、結果検証の流れが効果的である。ただし、Web広告の場合には時間帯や曜日、プラットフォームなど他の条件が異ならないように注意が必要だ。 ABテストで問題解決の精度を高めるには? さらに、ABテストは「データ分析を通じて問題解決の精度を高める(Check)」と「仮説を試しながらデータを収集し、よりよい問題解決につなげる(Act)」を迅速に行うことができるため、非常に効率的だ。 例えば、メルマガでイベント告知を行う際にABテストを活用すれば、それぞれ訴求する内容を変えて、どの訴求ポイントが効果的かを検証することができる。しかし、解決案をひとつに絞るのは良くないので、SNS投稿など別のアプローチも併用して検証する必要があるだろう。 問題解決の全体像を把握するには? これまで、ランディングページ(LP)作成や広告を打つ際、一度行ったABテストの結果に満足して長期間使用していたことを反省。常に仮説を持ち、様々な角度から検証して改善していくことが必要だと感じた。また、問題解決の4つのステップ(What→Where→Why→How)の順番を意識し、単に解決策を考えるだけでなく、その全体像を把握することにリソースを費やすことを心がけたい。

「目的 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right