データ・アナリティクス入門

物流の待機料問題を解決する分析手法の習得

分析の基本とは? 「分析とは比較である」という教えについて学びました。これは、課題を要素に分解して整理し、個人や会社の状況に応じた基準(目的)を設けて、その要素と基準を比較することを意味しています。基準を「達成すべき目的」とすると、各要素の優先順位や捨てるべきところが明確になってくると感じました。逆に、基準に満たない要素は改善策の検討対象として捉えることができることも学びました。 物流業界での分析方法は? 私は物流会社で働いており、2024年問題の一つとして「待機料」の明確化が挙げられます。待機という問題を要素(要因)に分解し、それらを自社都合と輸送会社都合にグループ化することで、分析の対象が明確になると考えました。 データ活用で何が変わる? 現在、導入済みのアプリから取得できるデータを使い、要素を整理して分析対象を決定する予定です。本講座を通じて、適切な分析方法を理解していこうと考えています。 待機料と時間の相関は? 具体的には、待機料の標準偏差値を算出することで支払い金額の正常範囲を決定し、異常値はチェックする体制を構築します。また、待機料の発生要因と待機時間の相関関係を数値化し、どの要素に対して改善策を打つべきかを社内で共有します。

データ・アナリティクス入門

小さな実験から大きな発見

原因分解はどうする? 問題の原因を明らかにするためには、まずプロセスに分解することが重要です。また、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが求められます。 テスト実施はどう? ABテストは、条件をできるだけ揃えて比較する有効な手法です。実施する際は、まず目的や仮説を明確にし、検証項目をしっかり設定することが大切です。さらに、テストは1要素ずつ行い、複数の要素を同時に検証する際は他の手法の検討が必要です。加えて、同一期間で実施することでテスト要素以外の環境要因の影響を最小限に抑えることが可能となります。 検証法はどう考える? 広告効果の検証においては、CVポイントやKPIに応じて適切な検証方法が変わります。実際にABテストを実施する場合もあるため、どのポイントを検証するかという仮説設定が非常に重要です。 効果はどこで現れる? 現在、広告効果の検証と分析に活用しているソリューションがあり、さらに新たなソリューションの開発も進めています。両方のソリューションを同時に走らせることで、どのKPIやCVポイントで新しいソリューションの効果が発揮されるかをABテストによって検証する絶好の機会だと考えています。

クリティカルシンキング入門

スライド作成のコツを学び、効率UP!

データの相関性とは? メッセージと図、グラフなどのデータの相関性について考える際には、まず伝えたい内容と誰に伝えるかを明確にすることが重要です。これにより、作成にかける時間の効率も向上します。 スライド作成の工夫は? スライドの補足的な要素として、矢印、フォント、配置などを有効に活用することは大切です。特に、新入社員向けに年間予算作成方法をレクチャーする際には、図や一般的な用語を使い、文字数を増やさずに分かりやすい資料を作成することを心がけています。 初心者の視点を忘れない 自分が慣れてしまっている内容でも、毎年のレクチャー中に思わぬ質問が出ることがあります。これは、私にとっては当たり前でも、初めての人にはわかりにくい部分があるためです。そうしたフィードバックを忘れずに、資料を日々校正し直していきたいと思います。 スムーズなスライドチェック スライドが完成した後には、必ず読み手の視点で見直し、スムーズに読み取れるかを確認します。もし読み取りづらい場合は、矢印、配色、メッセージ、配置などを再検討します。また、社内外問わず良いプレゼン資料に触れる機会を活かし、コツを学んで自分のプレゼンのバリエーションを増やしていきたいです。

データ・アナリティクス入門

ロジックで拓く学びの扉

ロジックツリーって何? ロジックツリーとは、ある問題や課題に対して、その構成要素を分解し整理するためのワークフレームです。複雑な要素を明確にし、原因や解決策を見つけ出すためには、MECE(もれなくダブりなく)を意識することが重要です。 なぜ手順が必要? システム導入のプロジェクト進行で発生する問題に対して、ロジックツリーを活用する具体的な手順は以下の通りです。まず、タスクが遅延している原因という起点となる要素を設定します。次に、その要素を「スケジュールに対する意識不足」「リソース不足」「スケジュール自体に問題がある」などといった具体的な要因に分解します。 どう深掘りするの? さらに、各要素について深掘りし、たとえばリソースが不足している場合には、タスクに必要な要員を明確に割り出していなかったことが原因として考えられます。その上で、各原因に対して解決策を検討します。具体的には、必要な要員の割り出しを行い、タスクを完了するためにどの要員がどれだけ必要かを明確にし、要員の調整を試みるという方法です。 実行計画はどうなる? 最後に、検討した解決策に優先順位を付け、実行計画を立てることが、問題解決のために有効であると考えられます。

データ・アナリティクス入門

多面的視点で掴む成長のカギ

原因を探るヒントは? 原因を探る際には、与えられたデータのみならず、プロセス全体に目を向けることで、より深い示唆を得ることができます。このアプローチは、問題に関わる要素とそうでない要素を分ける「対概念」という考え方にも通じています。 A/Bテストの重要性は? たとえば、WEB画面のUIUX検討時には、これまで担当者が一案に絞ってリリースしていたため、思い描いた効果が得られなかったという事例があります。今後は、複数の施策を同一条件下で比較するA/Bテストを活用し、データに基づいて顧客に響く施策を選定する手法に切り替えていきます。 営業プロセス見直しは? また、営業活動による収益最適化のデータ分析では、営業プロセスが曖昧に分類されていたため、正確な要素抽出が困難でした。そこでフロントメンバーへの丁寧なヒアリングを実施し、プロセスを適切に分割することで、各要素を明確に特定し、分析精度を向上させています。 テスト実施の秘訣は? さらに、A/Bテストの実施にあたっては、期間設定や施策パターン数の考慮が重要なポイントとなっています。これらの条件をどのように整えるかが、テストの効果を左右する鍵となるでしょう。

データ・アナリティクス入門

自社WEBメディアの問題解決に挑むリアルな試行錯誤

ミュージックスクール問題解決の手法は? 実際にミュージックスクールの課題をデータを用いて分析し、解決策を検討したところ、リアルな問題を考えることで、自分に置き換えリアルにイメージできるようになってきたと感じています。問題を問題解決ステップのWhat、Where、Whyまでを整理する習慣を身につけたいです。 WEBメディア運用でのベストプラクティスは? 私は自社WEBメディアの運用に従事しているため、以下のアプローチを取りたいと思います。まず、現状における問題を特定し、What、Where、Why、Howの各要素に分けて進めます。そして、A/Bテストやサイト上でのサムネイルの策定に時間をかけ、広告でのABテストにも時間をかけることで、効果を出していきたいです。 課題解決のプロセスで重要なことは? 原因をプロセス分解し、ボトルネックをきちんと把握することが課題解決の近道だと思いました。また、正解がない場合も広い視野を持ち、トライアンドエラーの精神で複数の選択肢を視野に入れて構築していくことが重要だと考えます。短期・長期のモデルを検討しながら、結果をしっかり分析し、最大限の効果が現れるように見極められるようになりたいです。

クリティカルシンキング入門

正確な思考が切り拓く未来

正確さの意義は? 文章を書く正確さの重要性を実感し、その考え方を学ぶことができました。主語や述語の大切さ、さらには説明の際に要素を分解して考える方法も理解でき、これらは反復練習でしっかり身につけたいと思います。 分解法は役立つ? また、分解して考えることは、営業報告においてどこに問題があり、なぜその問題が起こっているのかを分かりやすく伝える上で非常に役立つと感じました。今後、実戦でこの手法を積極的に活用していきたいです。 戦略策定はどうする? 今回の学びは、来期に向けた戦略策定の際、現状の課題整理や問題点の把握に大いに活かせそうです。たとえば、売上分析から伸びている事業とそうでない事業が明確になったことを受け、伸びている事業の人材を強化する方針について、今回の学びをもとに説明文を作成していくつもりです。 報告会に向け準備は? また、6月に控えた来期報告会に向けて、まず今月は数字をまとめ、1週間で分析を行い、課題を見える化する準備を進めます。さらに次の一週間で必要な施策を検討し、文章にまとめる予定です。最終的には、その文章の内容が正しいかどうかを今回の学びを振り返りながら確認していきたいと考えています。

データ・アナリティクス入門

A/Bテストの効果的な活用法を学ぶ!

問題原因の探求方法は? 問題の原因を探るためのポイントには、プロセスに分解するアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠を持って絞り込むことが重要です。例えば、クリック率やコンバージョン率の数値の原因を会社の戦略とそれ以外の要因(プラットフォームに起因するものなど)に分けて考えることが参考になります。 A/Bテストの効果は? A/Bテストについては、1要素ずつ比較し、なるべく同じ期間でテストを行うことが推奨されます。同じ期間で行わなければ、季節や曜日、時間といった細かい違いによって比較が難しくなります。A/Bテストは広告キャンペーンでの活用が考えられ、広告のビジュアルを変えて検証することや、掲載場所を変えてコンバージョン率を比較することで、不要な場所への広告掲示を避け、コストカットにつなげることができます。 A/Bテストを今後活用するには? 現在のところ、実際の仕事でA/Bテストを活用できる機会はありませんが、問題解決の方法として非常に効果的な検証方法であると感じています。今後、適用できる場面を見つけ出しながら、他の検証フレームワークも学んでいきたいと考えています。

マーケティング入門

顧客の心を動かすマーケの極意

なぜ顧客起点が必要? どんな状況においても、常に「顧客起点」や「顧客視点」に立ち返ることの重要性を改めて実感しました。マーケティングは、相手に伝わり、相手が魅力を感じることが目的であるため、顧客が必要としているものを、適切なタイミングで提供する工夫が求められます。このため、ネーミングやセグメント、ターゲティング、ポジショニングといった要素に注力する必要があると感じました。 どう具体策を考える? 具体的な施策としては、DM送付時のデザイン、ターゲットの選定、アンケート調査、ホームページ改訂やターゲット設定、さらには顧客インタビューの代替となるスクリプトの作成が挙げられます。また、ポスター制作においては内容の充実と貼付先の選定、WEB動画制作では内容の検討と配信先の選定が重要なポイントです。 理想像はどう実現? これまでの効果を客観的に振り返り、理想の姿をまず描くことが大切だと実感しています。その理想に向かって、各施策において最適な方法を全体的に検討していきたいと思います。歴史のある商品の経験値に囚われがちな現状を踏まえ、一度、顧客を正しく理解するところから見直していくことが必要だと強く感じました。

データ・アナリティクス入門

業界事例で実感!仮説検証術

どうして分解が有効? 様々な要素に分解して仮説を組み立て、データを意識した点はとても良いと思います。具体的な業界事例に当てはめて考えることで、理解がさらに深まるでしょう。 具体例はどう映る? 仮説を立てる際には、具体的な業界やビジネスシーンの例を考えると、思考がより深まります。また、データを検証する際にどのようなツールや手法を用いると効果的かを検討することも大切です。 実践で活かすには? 実際のビジネス状況で仮説検証をどう活用するかを考え、具体的に練習することが求められます。引き続き、さまざまな角度から課題を検討してみましょう。 なぜ幅広い視野? 課題は狭い視野だけでなく、幅広い角度で網羅的に考える必要があります。そうしないと、本当の課題を見落としてしまう恐れがあるため、どのようなデータで検証できるかもしっかりと検討することが重要です。 共有はどう役立つ? 自分の考えに固執せず、要素の重要性を周囲と共有しながら多角的に検討していくことが必要です。そして、どのように検証すべきか、またどの項目を指標として設定すべきかを同時に整理していくことが求められていると感じました。

マーケティング入門

感情と機能が織りなす価値創造

付加価値って何? 今回の講義で、ものそのもの以上に付加価値があるという考え方について、機能的価値と情緒的価値という観点から言語化する重要性を改めて感じました。顧客の体験は、個々の感情と結びつくことで唯一無二のものとなり、結果として競合との差別化が図りやすくなるという点に大きな気づきを得ました。 物語はどう描く? また、商品設計においてすでに情緒的体験を多く取り入れている商品でさえ、パッケージ一つでも消費者にワクワク感を与える可能性があると実感しました。企業全体で徹底するのは難しい中、商品認知から購買に至るまでのストーリーを一連で具体的に描くことの重要性を強く認識し、担当商品の振り返りが必要だと感じました。 多面的に成功する? 正直なところ、プロダクト自体の視点だけではどうにもならない商品が市場に出回る場面もあると実感しています。しかし、今回の講義で得た知識を基に、プレイスやプロモーション、体験価値など複数の要素を組み合わせることで、成功の可能性を高められると感じました。今後、このような商品に出会ったときには、従来の一方向的なアプローチだけでなく、多面的な視点から売り方を検討してみたいと思います。

データ・アナリティクス入門

ロジックツリーで解明する挑戦

問題解決の第一歩は? 問題解決のプロセスは、「問題の明確化、問題の特定、分析、立案」の4つのステップで進めることが基本です。まず、あるべき姿と現状とのギャップを整理し、定量的な指標で表現することで、問題の本質を明らかにします。 ロジックツリーの意味は? 次に、ロジックツリーを用いて問題を層別分解と変数分解の視点から特定します。この手法は、抜け漏れなく全体を捉えるために有効であり、MECEの考え方を取り入れることで、効率的な分析が可能になります。 データ分析の見直しは? 実際の業務では、ある営業活動の最適化に向けた分析で、手元のデータをもとに検証を試みたものの、結論に至る前に、まずロジックツリーによる要素の分解と、分析の切り口についての再検討が必要だと感じました。また、参加しているプロジェクト全体のパフォーマンス改善にも、この手法を活用できると考えております。 改善策の判断は? ただし、分析においては良い切り口と悪い切り口の判断が難しいという現実も感じました。今後は、これらの手法を実践しながら、より効果的な分析の切り口を見極め、改善策を立案していくことが重要だと実感しています。

「検討 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right