マーケティング入門

直感とデータで挑む戦略の未来

自社の強みはどう活かす? ある企業の事例と富士フィルムの事例から、自社の既存の強みをいかにターゲットに届けるかというマーケティング手法の有効性を学びました。他社のサービスをどの程度意識し、意思決定に反映するかも重要なポイントです。機能比較のためにまるばつ表を作成し、改善点を洗い出す手法には一定の効果があると感じる一方、プロダクトの機能が他社と類似し、手数料による差別化が進むケースもあるため、実行のスピード感も求められていると実感しました。 どの軸で攻める? 経営層の直感的な意思決定によって各種プロダクトが立ち上がり、顧客層が中小企業向けから大企業向けに拡大する中で、今後どの軸で攻めるかを議論する段階にあると感じています。プロモーション手法に先立ち、まずは各プロダクトがどの伸び代に位置しているかを明確にし、戦略を立案することが最優先事項だと思います。経営陣へのインプットも含め、各種マーケティングフレームワークを用いて、伸び代の定義やデータ分析の結果を踏まえた戦略作りを進める必要があります。 戦略検証はどう進む? また、既存顧客の属性をデータで分析し、ユーザーインタビューなどを通じた現プロダクトの価値検証によるメンタルモデルの分析が欠かせません。海外サービスを視野に入れた競合分析やポジションマップの作成、事業戦略とのストーリーラインの接続、さらに市場規模(TAM、SAM、SOM)の試算など、各種分析を通して具体的な全体戦略を描くべきだと考えています。加えて、既知の要望の深掘りをプロダクトロードマップに反映するとともに、エンジニアとの密なコミュニケーションや開発リソース確保のための内部稟議も重要な要素となると感じました。

クリティカルシンキング入門

日常に潜むクリティカル・シンキングの魅力

クリティカル・シンキングとは? クリティカル・シンキングとは、主観にとらわれず客観的に考える力のことを指します。この力を得るためには、「言われてみれば当たり前」のことを愚直に実行することが重要です。また、クリティカル・シンキングは全ての土台になる思考力であり、本を読んでも簡単には身につかないとされています。 仕事のシーンで活かすには? 仕事のほとんどは、「誰かに何かを伝えること」、そして「課題解決や意思決定」に関連しています。具体的な例としては、顧客対応の場面で顧客がなぜその問い合わせをしてきたのかを理解することが挙げられます。また、数字分析と解決策の策定においては、想定される解決策が本当に他にないのか、またそれが最適なのか振り返って考察することが求められます。 採用面接で深掘りするには? 採用面接では、用意された回答の裏にある本音を「なぜ」と問いかけて深堀りすることが重要です。また、業務効率化においては、その業務が必要な理由や他に方法がないかを検討します。1on1のメンバーコーチングでは、メンバーがそう考える理由を理解し、無意識的に可能性を絞っていないかを確認します。ファシリテーションにおいては、有意義な議論ができるよう問いかけを設計することが求められます。 日々の習慣として振り返る 日々、「本当にそれが最適解か」「他にも方法はないか」という振り返りを習慣化することが大切です。また、リソース、コスト、社内、業界など無意識に作り上げてしまうかもしれない制限がなければ、他に何ができるかと想像を巡らせることも役立ちます。さらに、先回りして相手の意図を汲み取るのではなく、改めて「なぜ」と問いかける姿勢を持つことも重要です。

データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

データ・アナリティクス入門

目的で変わる!本気のデータ分析

分析の目的は? 今回の課題を通じて、データ分析の出発点はデータそのものではなく、「この結果を用いて何を判断するのか」という目的の明確化にあると実感しました。これまで、私自身は目的を曖昧にしたまま手元のデータ項目を比較することで、単に数値の違いを示すだけに終始していたため、数値の変動理由が不明瞭なままで、次にどのような行動を取るべきかが判断できませんでした。 比較軸整理はどう? 今回の学びから、目的に立ち返り、目標達成に必要な情報が整理された項目を選定し、条件が同じ項目同士を比較することが、真に意思決定に結びつく分析を行うために不可欠であることに気付きました。今後は、分析の前に判断すべき内容を明文化し、それに基づいて比較軸とデータ項目を整理することで、より実践的かつ具体的な行動に結びつく分析を目指していきます。 施策の実行は? また、今回学んだ「目的に基づくデータ分析」の考え方は、私が関わるチームの売上拡大や販売体制の最適化にも大いに活かせると感じています。たとえば、催事別、店舗別の売上や人員配置などのデータをただ眺めるのではなく、「どの施策が成果に結びついているのか」「どの事例を基準にすれば再現性のある成果を期待できるのか」という明確な目的をもとに分析することで、成功要因をより具体的に特定することが可能になります。 具体的な行動としては、まず分析前に判断すべき内容を明確に記述し、比較軸や指標を整理します。その後、時系列や複数の切り口からデータを集計・可視化し、売上や生産性への影響を検証する手法を取り入れます。このプロセスにより、チーム全体で施策の再優先順位を見直し、より効果的な行動計画を策定していく所存です。

マーケティング入門

ターゲティングとポジショニングの新発見

ターゲティングの6Rとは? ターゲティングにおいては、ただ「この商品はこういう顧客に売れそうだ」というだけでは不十分です。市場規模、優先順位、成長性、到達可能性、競合状況、反応の測定可能性といった6つの要素である「6R」で評価し、ターゲットを決定する必要があります。 訴求ポイントの絞り方は? ポジショニングについて、商品の訴求ポイントは2つまでに絞ることが重要です。商品の特性を洗い出し、その中から「顧客の共感を得られる」および「競合と差別化できる」特徴を選定しましょう。顧客が「この商品が好きです、なぜなら~だからです」と明確に理由を述べられるようなポイントでなければなりません。また、パーセプションマップを活用して確認することも大切です。 商品の訴求ポイントを絞ることで、お客様に伝わりやすくなることは理解していました。しかし、どの訴求ポイントを選ぶかに関しては、自分のこだわりが勝ってしまうことが多く、顧客の共感を得られ、競合と差別化できるかの確認が不足していたと感じました。今後はその視点を意識して取り組んでいきたいと思います。 ターゲット拡大の手段は? ターゲットの変更については、特に既存のブランドの顧客層を広げる際に非常に有効な手段だと実感しました。柔軟な考え方を持ちながら、このアプローチを取り入れてみたいと思います。 ブランドとしては、すでにターゲットがある程度決まっている商品の企画を担当することが多く、ターゲットについて深く考える機会が少なかったです。今回の講義で学んだターゲティングのフレームワークを活用し、異なるターゲットに対してどのような訴求が共感を得るのかを日頃から意識して考え続けたいと思いました。

クリティカルシンキング入門

データを解剖して見えた営業の新展開

数字の活用法は? 数字を味方にするためには、分解して解像度を上げることが重要です。数字をうまく利用することで、問題箇所を特定しやすくなります。迷った時には、とにかく手を動かすことが肝心です。 データ加工の工夫は? まず、数字の加工に関しては、与えられたデータをそのまま使用するのではなく、自分で追加の欄を設ける工夫が必要です。仮説を持ち、どの単位で分解すると有益かを考えることがポイントです。 切り口はどう考える? 数字を分解する際の留意点としては、切り口をMECE(Mutually Exclusive, Collectively Exhaustive)で考えることが挙げられます。一つの傾向が見えても複数の切り口で他に傾向がないか探すことが重要です。傾向が見えなくても、それはそれで意味があります。 強みと弱みは? 営業成績の振り返りにおいては、担当者の強みや弱みを把握すること、代理店内の強みや弱みも同様に把握することが肝要です。また、品質に関しても同様に、担当者や代理店の強みと弱みを理解することが求められます。 業務分担と数値は? 業務適正化には、月間スケジュールと週間スケジュールの策定、および業務の分担が含まれます。さらに、営業成績の振り返りでは、まずは活用していた数字が正しかったかの確認から始め、決まった期間で得られる数値を把握し、分解する項目を決定。そして、その項目をルーティンで確認することが重要です。 品質分析はどう? 品質の振り返りにおいては、定められた数値に対して新しい切り口を模索するために時間をかけることが求められます。業務適正化では、現状の分析と必要業務の確認が中心となります。

データ・アナリティクス入門

分析の「比較」効果で迷い解消!

分析の基本: 比較の重要性とは? 分析は比較であるというシンプルな理解に到達しました。以前は、数字から何を見出すべきか分からず複雑に考えていましたが、シンプルな視点からスタートすることの重要性を学びました。ただし、正しい比較対象がなければ、正確な分析はできません。このことに関連して、"要素をそろえる"という部分については、さらに実践的な学習や本コースでの深掘りを行いたいです。 効率的な分析設計のために必須なことは? また、グラフなどの見せ方を決定する以前に、分析する目的を設定すること、特に依頼された場合はその確認が大事だという点も理解しました。これにより、システムテストの品質評価やベンダー選定時など、具体的な場面で分析の質を向上させることができると考えています。 データ分析における注意点とは? これまでの経験では、依頼時に目的が曖昧な状態で受け取ることが多く、データの分析において何をすべきか判断がつかなくなり、結論を出せないこともありました。今後は、以下の3点を重視して取り組む予定です。まず、やみくもにデータを加工せず、目的の確認と仮説立てを確実に行うこと。次に、分析は比較を念頭に置くこと。そして、比較対象を分析の目的に沿って選定することです。 依頼者とのコミュニケーションで何が重要? 依頼者からは、目的の確認や必要な分析の方向性をしっかり聞き取ることが重要です。分析を始める前に目的を明確にするステップを必ず取り入れるべきだと感じました。その際、仮説をある程度考えると良いと思いました。また、仮説を立てる際には、比較対象が適切かどうかを依頼者と事前に合意することで、さらにスムーズに進められると感じています。

データ・アナリティクス入門

データで意思決定力を高める学び

データにコメントを加えるべき理由は? 対面で説明をしていたため、分析データ(数値やグラフ)にコメントを入れることができなかった部分がありました。しかし、その場にいない人や聞いていない人もいることを考えると、文章を加えることは重要です。 グラフ選びのポイントは? 誰が見てもわかりやすいデータを提供するために、大きな数値には%を、シェアを見るためには円グラフを、上がり下がりを示すには縦棒グラフを、差を示すには横棒グラフを適切に使い分けることが大切です。 効果的な意思決定のためには? 「意思決定を行う」ための分析には、比較対象を明確にし、その基準を設けることが重要です。基準が人によって異なると、決定が難しくなります。そのため、上司や同僚との確認やコミュニケーションをしっかりと行うことが必要です。 計画作りで考慮すべき点は? 分析に取り掛かる前には、ヒアリングや過去資料を確認し、仮説を立ててから分析を進めることが重要です。計画は大まかでなく、他人も理解しやすいように具体的に作成し、次に生かせる内容にすることを心掛けたいと思います。資料のページ数は増えてしまうかもしれませんが、「意思決定を行う」という目的を意識しながら簡潔にまとめる努力が必要です。 定量・定性分析の進め方は? 過去に事例がなく、基準や要素、軸なども整備されていない状態ではありますが、データを活用して定量・定性分析を進め、今後共通する基準を元に意思決定ができる土台を築いていく必要があります。中期的な目標としては、PDCAを回せるようにすることを掲げています。そして、短期的には基準の作成という要修正項目を念頭に置きながら分析を進めていきます。

データ・アナリティクス入門

発見!数字が紡ぐ成長物語

現状と目標はどう? データ分析の基本は、まず現状を正確に把握し、理想の状態を明確にすることにあります。現状を理解した上で目標を設定することで、実現可能な改善策の検討が可能となり、より効果的な意思決定につながります。 比較で見えるものは? また、分析作業においては、異なる時期やグループ間での比較が鍵となります。比較を行うことで、問題点や改善策が明確になり、データから得られる示唆が深まると感じました。 切り口の変化に気づく? さらに、データの分解や分類、そして視点の切り替えを適切に行うことが分析の精度向上に直結します。目的に合わせた切り口でデータを見ることで、従来は見落としがちな傾向や改善点が浮かび上がり、最終的に意思決定を行う上で必要な情報が明確になります。 グラフで何が分かる? 実務での分析において、ヒストグラムや散布図を取り入れる試みを行いました。これまで平均値や中央値といった基本的な数値だけで評価をしていたため、賃貸物件の募集データにおけるばらつきや分布の傾向を見逃していました。しかし、ヒストグラムや散布図を作成することで、特定の物件の賃料が極端に高いまたは低いケースが存在していることに気づくことができ、単純な平均値だけでは把握できなかった重要な情報を得ることができました。 次は何に注目する? 今後は、データ収集時に注目すべきポイントや重要な変数を明確にし、分析の目的に合ったデータを選定することを徹底します。また、定期的にヒストグラムや散布図を作成してデータのばらつきや傾向を常時確認し、分析結果を関係者に報告してフィードバックを受けることで、さらなる改善を進めていくつもりです。

データ・アナリティクス入門

分析を活かす!仮説とフレームワークの実践術

仮説はどう見える? 仮説を明確にしてから分析を進めることが重要です。これにより、適切なデータの取得が可能となり、比較したい項目に対して最適なビジュアル化を行うことができます。分析ではいくつかのフレームワークを利用することで、効率的に進めることができます。 成長促進は何が必要? 勤務先の成長を促進するために、どの領域にリソースを投入するべきかを判断する際には、分析結果をもとに経営の意思決定を支援したいです。この際、従来の定性的なニーズ内容に加え、定量的データの分析も考慮に入れます。また、複数のテーマを比較し、最適な選択ができるようなアウトプットを心掛けます。学んだ内容を資料に反映させ、周囲に影響を与えることで、他社のスキル向上へと繋げたいです。 図表作成の第一歩は? Excelで図表を作成するスキルを身につけるためには、苦手意識を払拭し、まずは行動に移すことが重要です。時間がかかっても取り組み、教本などの資料を購入し手元に置きましょう。 仮説構築のコツは? 仮説構築力を養うためには、網羅性のある複数の仮説を立てることが重要です。ロジックツリーの利用や、ブレインストーミングを行うことで、より完結な仮説を構築できます。 実践力はどう磨く? フレームワークに関する知識を増やし、実践力を付けるためには、積極的に情報を交換し、見つけた事例を他人に教えるなどコミュニケーションを大切にします。困った時にはフレームワークを検索する癖をつけ、自身の業務に応用してみましょう。 記録管理はどう活用? これらの知識や成果を一か所に記録する場所を設け、振り返りや忘れ防止に活用することが効果的です。

戦略思考入門

現実を知り、未来を描く学び

規模の経済ってどう考える? 「規模の経済性」という言葉は知っているものの、自社の状況に合わせて具体的に説明するのは難しく、正しい理解が必要だと感じました。生産量を増やすことで必ずしもコストが下がるわけではなく、需要、設備能力、在庫管理、資金繰りなど、さまざまな制約条件を考慮しなければならないと分かりました。また、原材料を大量に発注してコスト削減を狙っても、市場環境や仕入先の状況によっては効果が限定される場合があり、単に数量を増やすだけでは交渉力に繋がらないことも理解しました。 戦略原理は実践できてる? さらに、戦略の原理やフレームワークは知識として持つだけでは不十分で、数字やデータ、自社の実情に照らして活用することが重要だと感じました。自社の商品やサービスの理解を深め、業務フローや収益構造を把握することで、提案や意思決定の説得力が向上することにも気付かされました。 生成AIの変化はどう捉える? また、生成AIの登場により、従来の開発者が習熟していく過程が変わりつつある現状もあり、この変化は「習熟効果」が技術革新によって無効化される例ともいえ、イノベーションが既存の競争原理を覆す瞬間だと感じました。 多領域スキルはどう磨く? このような状況に対する打開策として、単一の専門スキルに依存するのではなく、複数の領域にまたがる知識や経験を横断的に活用できる体制を築くことが有効だと考えます。具体的には、開発者としてのコーディング能力だけでなく、要件定義、UX設計、ビジネスモデルの構築、データ分析など、隣接する領域のスキルを組み合わせることで、AIツールを前提にした新たな付加価値の創出が期待できると感じました。

アカウンティング入門

数字の裏側で読み解く利益の秘密

利益構造はどう見える? 今週は、損益計算書から企業や店舗の利益構造を読み解く力を養う学びを得ました。売上や費用の数値の背後には、ビジネスモデル、顧客ターゲット、コスト構造など、戦略的な意思決定の結果が反映されていることに気づきました。同じ業種内でも、提供する価値やコンセプトの違いにより、利益を上げる方法が大きく異なる点が印象的でした。結果だけでなく、その仕組みに注目する姿勢を、今後も意識していきたいと思います。 業務改善はどう進む? 現在の業務では予算策定や業務改善に関わる機会が多いため、今回の学びをコスト分析や投資判断に活かしていくつもりです。具体的には、各支出項目の構成比を分析し、売上に対する影響度の大きい要素を特定して、改善の優先順位を決める方法を検討しています。また、資料作成時には「なぜこの数値になるのか」「どのような仕組みで利益が生まれているのか」といった視点を意識し、経営層にも伝わる論理的な説明を心掛けたいと考えています。そのため、まずは月次レポートのフォーマットを見直し、損益計算書の視点を取り入れるところから始める予定です。 売上と利益の謎は? さらに、P/Lを学ぶ中で「売上が伸びているのに利益が減る理由は何か」という疑問が浮かびました。成長戦略に伴い販管費や設備投資が先行しているのか、または売上自体が薄利多売の構造なのかといった見方が必要ではないかと考えています。このような状況を正確に把握するためには、損益計算書だけでなく、キャッシュフローや貸借対照表との連動性にも注目することが重要だと感じました。今後の学習では、これらの視点も取り入れながら理解を深めていきたいと思います。
AIコーチング導線バナー

「決定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right