マーケティング入門

ターゲティングとポジショニングの新発見

ターゲティングの6Rとは? ターゲティングにおいては、ただ「この商品はこういう顧客に売れそうだ」というだけでは不十分です。市場規模、優先順位、成長性、到達可能性、競合状況、反応の測定可能性といった6つの要素である「6R」で評価し、ターゲットを決定する必要があります。 訴求ポイントの絞り方は? ポジショニングについて、商品の訴求ポイントは2つまでに絞ることが重要です。商品の特性を洗い出し、その中から「顧客の共感を得られる」および「競合と差別化できる」特徴を選定しましょう。顧客が「この商品が好きです、なぜなら~だからです」と明確に理由を述べられるようなポイントでなければなりません。また、パーセプションマップを活用して確認することも大切です。 商品の訴求ポイントを絞ることで、お客様に伝わりやすくなることは理解していました。しかし、どの訴求ポイントを選ぶかに関しては、自分のこだわりが勝ってしまうことが多く、顧客の共感を得られ、競合と差別化できるかの確認が不足していたと感じました。今後はその視点を意識して取り組んでいきたいと思います。 ターゲット拡大の手段は? ターゲットの変更については、特に既存のブランドの顧客層を広げる際に非常に有効な手段だと実感しました。柔軟な考え方を持ちながら、このアプローチを取り入れてみたいと思います。 ブランドとしては、すでにターゲットがある程度決まっている商品の企画を担当することが多く、ターゲットについて深く考える機会が少なかったです。今回の講義で学んだターゲティングのフレームワークを活用し、異なるターゲットに対してどのような訴求が共感を得るのかを日頃から意識して考え続けたいと思いました。

クリティカルシンキング入門

データを解剖して見えた営業の新展開

数字の活用法は? 数字を味方にするためには、分解して解像度を上げることが重要です。数字をうまく利用することで、問題箇所を特定しやすくなります。迷った時には、とにかく手を動かすことが肝心です。 データ加工の工夫は? まず、数字の加工に関しては、与えられたデータをそのまま使用するのではなく、自分で追加の欄を設ける工夫が必要です。仮説を持ち、どの単位で分解すると有益かを考えることがポイントです。 切り口はどう考える? 数字を分解する際の留意点としては、切り口をMECE(Mutually Exclusive, Collectively Exhaustive)で考えることが挙げられます。一つの傾向が見えても複数の切り口で他に傾向がないか探すことが重要です。傾向が見えなくても、それはそれで意味があります。 強みと弱みは? 営業成績の振り返りにおいては、担当者の強みや弱みを把握すること、代理店内の強みや弱みも同様に把握することが肝要です。また、品質に関しても同様に、担当者や代理店の強みと弱みを理解することが求められます。 業務分担と数値は? 業務適正化には、月間スケジュールと週間スケジュールの策定、および業務の分担が含まれます。さらに、営業成績の振り返りでは、まずは活用していた数字が正しかったかの確認から始め、決まった期間で得られる数値を把握し、分解する項目を決定。そして、その項目をルーティンで確認することが重要です。 品質分析はどう? 品質の振り返りにおいては、定められた数値に対して新しい切り口を模索するために時間をかけることが求められます。業務適正化では、現状の分析と必要業務の確認が中心となります。

データ・アナリティクス入門

分析の「比較」効果で迷い解消!

分析の基本: 比較の重要性とは? 分析は比較であるというシンプルな理解に到達しました。以前は、数字から何を見出すべきか分からず複雑に考えていましたが、シンプルな視点からスタートすることの重要性を学びました。ただし、正しい比較対象がなければ、正確な分析はできません。このことに関連して、"要素をそろえる"という部分については、さらに実践的な学習や本コースでの深掘りを行いたいです。 効率的な分析設計のために必須なことは? また、グラフなどの見せ方を決定する以前に、分析する目的を設定すること、特に依頼された場合はその確認が大事だという点も理解しました。これにより、システムテストの品質評価やベンダー選定時など、具体的な場面で分析の質を向上させることができると考えています。 データ分析における注意点とは? これまでの経験では、依頼時に目的が曖昧な状態で受け取ることが多く、データの分析において何をすべきか判断がつかなくなり、結論を出せないこともありました。今後は、以下の3点を重視して取り組む予定です。まず、やみくもにデータを加工せず、目的の確認と仮説立てを確実に行うこと。次に、分析は比較を念頭に置くこと。そして、比較対象を分析の目的に沿って選定することです。 依頼者とのコミュニケーションで何が重要? 依頼者からは、目的の確認や必要な分析の方向性をしっかり聞き取ることが重要です。分析を始める前に目的を明確にするステップを必ず取り入れるべきだと感じました。その際、仮説をある程度考えると良いと思いました。また、仮説を立てる際には、比較対象が適切かどうかを依頼者と事前に合意することで、さらにスムーズに進められると感じています。

データ・アナリティクス入門

データで意思決定力を高める学び

データにコメントを加えるべき理由は? 対面で説明をしていたため、分析データ(数値やグラフ)にコメントを入れることができなかった部分がありました。しかし、その場にいない人や聞いていない人もいることを考えると、文章を加えることは重要です。 グラフ選びのポイントは? 誰が見てもわかりやすいデータを提供するために、大きな数値には%を、シェアを見るためには円グラフを、上がり下がりを示すには縦棒グラフを、差を示すには横棒グラフを適切に使い分けることが大切です。 効果的な意思決定のためには? 「意思決定を行う」ための分析には、比較対象を明確にし、その基準を設けることが重要です。基準が人によって異なると、決定が難しくなります。そのため、上司や同僚との確認やコミュニケーションをしっかりと行うことが必要です。 計画作りで考慮すべき点は? 分析に取り掛かる前には、ヒアリングや過去資料を確認し、仮説を立ててから分析を進めることが重要です。計画は大まかでなく、他人も理解しやすいように具体的に作成し、次に生かせる内容にすることを心掛けたいと思います。資料のページ数は増えてしまうかもしれませんが、「意思決定を行う」という目的を意識しながら簡潔にまとめる努力が必要です。 定量・定性分析の進め方は? 過去に事例がなく、基準や要素、軸なども整備されていない状態ではありますが、データを活用して定量・定性分析を進め、今後共通する基準を元に意思決定ができる土台を築いていく必要があります。中期的な目標としては、PDCAを回せるようにすることを掲げています。そして、短期的には基準の作成という要修正項目を念頭に置きながら分析を進めていきます。

データ・アナリティクス入門

発見!数字が紡ぐ成長物語

現状と目標はどう? データ分析の基本は、まず現状を正確に把握し、理想の状態を明確にすることにあります。現状を理解した上で目標を設定することで、実現可能な改善策の検討が可能となり、より効果的な意思決定につながります。 比較で見えるものは? また、分析作業においては、異なる時期やグループ間での比較が鍵となります。比較を行うことで、問題点や改善策が明確になり、データから得られる示唆が深まると感じました。 切り口の変化に気づく? さらに、データの分解や分類、そして視点の切り替えを適切に行うことが分析の精度向上に直結します。目的に合わせた切り口でデータを見ることで、従来は見落としがちな傾向や改善点が浮かび上がり、最終的に意思決定を行う上で必要な情報が明確になります。 グラフで何が分かる? 実務での分析において、ヒストグラムや散布図を取り入れる試みを行いました。これまで平均値や中央値といった基本的な数値だけで評価をしていたため、賃貸物件の募集データにおけるばらつきや分布の傾向を見逃していました。しかし、ヒストグラムや散布図を作成することで、特定の物件の賃料が極端に高いまたは低いケースが存在していることに気づくことができ、単純な平均値だけでは把握できなかった重要な情報を得ることができました。 次は何に注目する? 今後は、データ収集時に注目すべきポイントや重要な変数を明確にし、分析の目的に合ったデータを選定することを徹底します。また、定期的にヒストグラムや散布図を作成してデータのばらつきや傾向を常時確認し、分析結果を関係者に報告してフィードバックを受けることで、さらなる改善を進めていくつもりです。

データ・アナリティクス入門

分析を活かす!仮説とフレームワークの実践術

仮説はどう見える? 仮説を明確にしてから分析を進めることが重要です。これにより、適切なデータの取得が可能となり、比較したい項目に対して最適なビジュアル化を行うことができます。分析ではいくつかのフレームワークを利用することで、効率的に進めることができます。 成長促進は何が必要? 勤務先の成長を促進するために、どの領域にリソースを投入するべきかを判断する際には、分析結果をもとに経営の意思決定を支援したいです。この際、従来の定性的なニーズ内容に加え、定量的データの分析も考慮に入れます。また、複数のテーマを比較し、最適な選択ができるようなアウトプットを心掛けます。学んだ内容を資料に反映させ、周囲に影響を与えることで、他社のスキル向上へと繋げたいです。 図表作成の第一歩は? Excelで図表を作成するスキルを身につけるためには、苦手意識を払拭し、まずは行動に移すことが重要です。時間がかかっても取り組み、教本などの資料を購入し手元に置きましょう。 仮説構築のコツは? 仮説構築力を養うためには、網羅性のある複数の仮説を立てることが重要です。ロジックツリーの利用や、ブレインストーミングを行うことで、より完結な仮説を構築できます。 実践力はどう磨く? フレームワークに関する知識を増やし、実践力を付けるためには、積極的に情報を交換し、見つけた事例を他人に教えるなどコミュニケーションを大切にします。困った時にはフレームワークを検索する癖をつけ、自身の業務に応用してみましょう。 記録管理はどう活用? これらの知識や成果を一か所に記録する場所を設け、振り返りや忘れ防止に活用することが効果的です。

戦略思考入門

現実を知り、未来を描く学び

規模の経済ってどう考える? 「規模の経済性」という言葉は知っているものの、自社の状況に合わせて具体的に説明するのは難しく、正しい理解が必要だと感じました。生産量を増やすことで必ずしもコストが下がるわけではなく、需要、設備能力、在庫管理、資金繰りなど、さまざまな制約条件を考慮しなければならないと分かりました。また、原材料を大量に発注してコスト削減を狙っても、市場環境や仕入先の状況によっては効果が限定される場合があり、単に数量を増やすだけでは交渉力に繋がらないことも理解しました。 戦略原理は実践できてる? さらに、戦略の原理やフレームワークは知識として持つだけでは不十分で、数字やデータ、自社の実情に照らして活用することが重要だと感じました。自社の商品やサービスの理解を深め、業務フローや収益構造を把握することで、提案や意思決定の説得力が向上することにも気付かされました。 生成AIの変化はどう捉える? また、生成AIの登場により、従来の開発者が習熟していく過程が変わりつつある現状もあり、この変化は「習熟効果」が技術革新によって無効化される例ともいえ、イノベーションが既存の競争原理を覆す瞬間だと感じました。 多領域スキルはどう磨く? このような状況に対する打開策として、単一の専門スキルに依存するのではなく、複数の領域にまたがる知識や経験を横断的に活用できる体制を築くことが有効だと考えます。具体的には、開発者としてのコーディング能力だけでなく、要件定義、UX設計、ビジネスモデルの構築、データ分析など、隣接する領域のスキルを組み合わせることで、AIツールを前提にした新たな付加価値の創出が期待できると感じました。

アカウンティング入門

数字の裏側で読み解く利益の秘密

利益構造はどう見える? 今週は、損益計算書から企業や店舗の利益構造を読み解く力を養う学びを得ました。売上や費用の数値の背後には、ビジネスモデル、顧客ターゲット、コスト構造など、戦略的な意思決定の結果が反映されていることに気づきました。同じ業種内でも、提供する価値やコンセプトの違いにより、利益を上げる方法が大きく異なる点が印象的でした。結果だけでなく、その仕組みに注目する姿勢を、今後も意識していきたいと思います。 業務改善はどう進む? 現在の業務では予算策定や業務改善に関わる機会が多いため、今回の学びをコスト分析や投資判断に活かしていくつもりです。具体的には、各支出項目の構成比を分析し、売上に対する影響度の大きい要素を特定して、改善の優先順位を決める方法を検討しています。また、資料作成時には「なぜこの数値になるのか」「どのような仕組みで利益が生まれているのか」といった視点を意識し、経営層にも伝わる論理的な説明を心掛けたいと考えています。そのため、まずは月次レポートのフォーマットを見直し、損益計算書の視点を取り入れるところから始める予定です。 売上と利益の謎は? さらに、P/Lを学ぶ中で「売上が伸びているのに利益が減る理由は何か」という疑問が浮かびました。成長戦略に伴い販管費や設備投資が先行しているのか、または売上自体が薄利多売の構造なのかといった見方が必要ではないかと考えています。このような状況を正確に把握するためには、損益計算書だけでなく、キャッシュフローや貸借対照表との連動性にも注目することが重要だと感じました。今後の学習では、これらの視点も取り入れながら理解を深めていきたいと思います。

データ・アナリティクス入門

データ分析で見つける新たな視点

分析プロセスの目的は? 分析は、目的に基づいて要素を分けて整理し、意思決定に活かすためのプロセスです。重要なのは、分析が迷子にならないようにすることです。目的を持ってデータを収集し、それに基づいて加工・分析を行うことが求められます。分析は比較となり、データの種類に応じた適切な加工法を使って意味を明確にすることが重要です。 視覚化手法をどう活用する? 視覚化の工夫も、分析の際には非常に役立ちます。例えば、n択の選択人数を割合で見る、全体に対する比率や割合を円グラフで表現するといった工夫が考えられます。推移の比較には縦棒グラフが適しており、要素間の比較には横棒グラフが効果的です。 仮説設定がなぜ鍵となる? 分析のプロセスで大切なのは、目的や仮説を明確にすることです。仮説をもってデータを収集し、加工して結果を導き出す過程で、なぜその分析を行うのか(背景)、そしてそのデータから何が言いたいのか(主訴)を明確にすることが鍵となります。また、仮説が誤っていると判明した場合は、分析の進め方や視点を見直し、正しい結論に導くことが必要です。 学んだことをどう実務に活かす? さらに、ライブ授業で学んだTIPSを実務に活かし、具体的なデータの可視化手法に取り組んでみることで、理解が深まります。質的データに関しても、名義尺度や順序尺度といった基本を学び、さらなる分析力を身につけてください。 このように、分析の目的やデータの加工法についてしっかり理解し、視覚化手法を活用することで、効果的な分析が可能になるでしょう。学んだことを実際のデータに適用し、実践を通じて、さらなるスキル向上を目指してください。

マーケティング入門

考えが変わる!売れる理由の実感

実際の本質は? マーケティングを学ぶ前は、フレームワークや知識をたくさん習得することが全てだと思っていました。しかし、実際には、顧客に商品の良さを伝え、魅力を感じてもらい、行動の変容を促すことが本質だと理解しました。その結果、自分の知識不足を痛感するとともに、すぐにでも訓練を始めたいという意欲が湧きました。 売れた理由は? 特に、なぜある商品が売れたのかを徹底的に考えるワークは、新鮮な驚きでした。自分が既に知っている商品を題材に実践しながら、世の中で売れている他の商品にも興味・関心が広がりました。 どう売り込む? 作った商品をどのように売り込むかを考えることは、私の業務の一つです。今後は出発点を顧客や市場に置き、誰にどのように満足してもらえるかを何度も検討した上で、何を作り出すかを決定していく考えに変えていきたいと思います。 知識不足は補えた? また、世の中についての知識不足を補うため、マーケティング脳を鍛える切り口として、以下の3つの視点を実践しています。 興味の源は何? 1.自分が興味・関心を持つ分野で、売れている商品は何か、なぜ売れているのかを考える 同世代はどう? 2.自分と同世代や同業種など、共通点のある分野で、売れている商品は何か、なぜ売れているのかを探る 異分野の秘密は? 3.自分と直接の共通点が見られない分野で、売れている商品は何か、なぜ売れているのか分析する 意見はどう活かす? 各視点から、毎日最低1つずつ事例を挙げ、なぜ売れているのかについては身近な人にも意見を聞くことで多角的な視点を取り入れるよう努めています。

データ・アナリティクス入門

論理を楽しむ!ロジックツリー活用術

WhatとWhereを問いかけると何が見える? What、Where、Why、Howのステップを通じて全体像を分析することの重要性を学びました。これまでは問題解決方法(How)だけに焦点を当てていましたが、WhatやWhere、Whyを問いかけることで、これまで気付かなかった不明確な点が見えてくる過程がとても楽しいと感じています。 ロジックツリーで視点をどう拡げる? また、ロジックツリー(MECE)を活用することで、「もれなく、だぶりなく」分類整理や、層別分解、変数分解が可能になり、とても興味深く学びになりました。物事を分解し、細分化することで新しい視点が得られ、それが意思決定や問題解決に役立つと感じています。 日々の業務にロジックツリーを応用するには? 日々の業務を管理する際に、上記のロジックを応用していきたいと思います。まだ具体的にどのキャリアに進むかわからないものの、ロジックツリーを活用することで、課題を整理し、聞き手にとってわかりやすい説明ができるだけでなく、周囲の同意や協力を得やすくなります。プロジェクトマネージメントの仕事では、know-howやプロセスの整理ができていたものの、周囲の理解を求める際の論理的な説明スキルには不足を感じていたため、これを改善していきたいと考えています。 ロジックツリーを習得する方法は? ロジックツリーを日常的に活用し、自分のものとして習得したいです。具体的には、MECEを用いてAIに壁打ちし、アイデアの整理を行います。さらに、メモに書き出し、図にすることで頭の中を整理し、スキルアップのHowツリーを更新していこうと考えています。

戦略思考入門

規模と範囲の経済性、効果的活用法を探る旅

経済性理論の適用に注意 規模の経済性、習熟効果、範囲の経済性について学び、それぞれの理論を理解しました。しかし、自組織にこれらを取り入れる際に、適切で効果的かを判断するのは難しいと感じています。今週の学習で強調されたように、安易な理論の適用は逆効果を招くかもしれないことを念頭に置きたいと思います。私自身、感覚に頼って意思決定をしてしまうことが多いので、費用対効果を定量的に説明できるかどうか、しっかりと根拠を持つことを考える習慣を身につけたいです。 部署統合によるスケールメリット 今年度は、複数の部署を機能的に統合し、スケールメリットを最大限に活用することを目指しています。繁閑対策や管理の一本化で規模の経済性を活かせているかもしれませんが、更なる効果がないかと考えました。また、新たに増えた要員を活用し、研修体制を見直すことで習熟効果を引き出せないかと模索しています。社員が定期的に異動する中で、範囲の経済性を活用するためには、どのような役割付与や育成支援が必要かについても考えました。また、範囲の経済性については、自社だけでなく、グループ会社を持つ場合には、グループ会社間での資源活用の可能性もあると気付きました。 次年度方針と経済性活用の検証 自組織が規模の経済性を最大限に活用できるように進めているため、実行が正しい方向へ向かっているかどうかを検証し、更に効果を引き出すための方法を次年度の方針と合わせて確認したいと考えています。範囲の経済性については、異なる部門やグループ会社間で同じ課題を抱えているケースが多いため、相互に資源を活用しながら改善や課題解決を図る具体策を考えます。

「決定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right