クリティカルシンキング入門

業務で活かすクリティカルシンキングの実践法

クリティカルシンキングの重要性とは? クリティカルシンキングにおいて、自分自身を批判的に考えることがまず印象的でした。本講座を受講する中で、業務において客観的に物事を考え、説得力のある説明や実効性のある施策を目指して取り組みました。以下の3点が特に学びとして強調されました。 1. 考え方: 課題を検討するゴール(イシュー)から必ず考えること。 2. 施策検討: ロジックツリーを用いた分析。 - データ分析でイシューの場所を特定(Where) - 原因究明(Why) - 施策検討(How) - 施策による副作用検討 - 実行 このプロセスでは、既存のフレームワーク(MECE、SWOT、3C、4Pなど)を使い、偏らないようにします。 3. 伝え方: ピラミッドストラクチャー(主張と根拠)とスライドの工夫(1スライド1メッセージ、効果的な可視化)。 新卒採用に潜む課題は? 現在、私は人事担当として、要員計画、能力開発、人事制度、エンゲージメントなどの施策を検討しています。例えば、要員計画の一環として新卒採用施策を検討する際、多くの学生に応募してもらうためのイベントの拡充に取り組んできましたが、本講座を通じて「取り組みやすい施策に飛びつく」傾向があることに気付きました。 新卒採用における課題を「会社になじめず早期退職やメンタル不調になる若手」と「売り手市場での質・量の確保が難しい点」の2つに設定した場合、イベントの拡充は有効ですが、前者への取り組みが不足していると感じました。 より良い施策実現に向けてどう進めるべきか? 今後は、具体的施策を検討する前に全体のイシューをロジックツリーで整理し、原因(Where、Why)および具体策(How)を検討します。そして、同僚や上司からのフィードバックを反映し、より良い施策を実施します。 最近受講したWeek5では、以下の点に取り組んでおり、継続して進めたいと思っています。 1. 現在取り組んでいる人事施策のイシューの洗い出しと優先順位の設定。 2. 自分が実務を担当する業務では、原因の特定と施策の検討。 3. 部下が実務を担当する業務では、クリティカルシンキングの考え方を紹介。 例えば、各人事施策に対して、「取り組みやすさ」に逃げず、本質的な課題に正面から向き合って解決していきたいと考えています。

データ・アナリティクス入門

対概念で拓く経営戦略の新視点

対概念の意義は何? 対概念とは、ある概念に対して反対または対照的な意味を持つ別の概念を考えることで、物事をより明確に理解し議論の幅を広げる手法です。問題解決に取り組む際は、原因をプロセスに分解する方法、複数の解決策を根拠をもって絞り込む視点、A/Bテスト方式を活用した実践検証、そしてデータ分析を組み合わせた段階的な課題抽出と検証の流れが重要となります。 M&Aリスクはどう考える? 例えば、M&A案件のリスク評価と意思決定においては、ポジティブな要素であるシナジー効果と、ネガティブな統合リスクを対概念として捉え、財務リスク、組織文化、オペレーションといった要因に分解して考えます。各リスク要因を定量化することで、M&A後の成功確率を高めるためのより正確な判断が可能となります。 統合戦略はどれが最適? また、企業の経営戦略策定、特にM&A後の統合戦略においては、段階的統合と急速統合という二つのアプローチを検討し、A/Bテスト方式でそれぞれの効果を比較します。統合プロセスの進捗データや業績、従業員満足度といった具体的な指標をもとに、どちらの戦略がより良い成果を生むかを実証的に評価していきます。 リスク評価の秘訣は? さらに、リスク評価のためのフレームワーク作成では、過去の成功事例や失敗事例をデータベース化し、財務、組織文化、オペレーション、市場環境といった指標を基にリスク評価シートを作成します。これにより、各案件ごとのリスクが客観的に評価され、精度の高い投資判断を導き出すことが期待されます。 定量化結果は何? 続いて、データ分析を用いた定量化では、財務データや従業員エンゲージメント、企業文化の適合度を測る指標を設定し、回帰分析や相関分析を活用します。特に、文化の不一致が従業員の離職率に与える影響などを数値化することで、過去のM&Aデータから成功パターンや失敗パターンを明らかにし、これを次の意思決定に生かすことが可能となります。 結果の信頼はどう確保? 対概念とA/Bテストを通じて物事を深く理解しようとする姿勢は非常に評価できます。今後は、どのような状況で対概念を活用するのが効果的か、またA/Bテストで得られた結果の信頼性をどのように確保していくかといった点について、さらに思考を深めながら実践につなげていくことが求められます。

データ・アナリティクス入門

問題解決の思考法でデータ分析を深化

問題検討の枠組みとは? 何、どこ、なぜ、どうの枠組みで問題を検討することは、出発点を探しやすくする重要なプロセスです。フリー記述の演習では、当初は部分的な問いしか思いつかなかったものの、この枠組みに沿って順を追って考えることで、問題を網羅的に洗い出しやすくなりました。これは、思考の癖を理解し、問題を整理するための効果的な手法です。 データ分析の新たな切り口は? 実際のデータ分析においては、データを見る切り口のバリエーションを増やすことが大切です。複数の種別や分類を挙げる演習では、初めに思いつくのは定性データ寄りでしたが、自分の事業や組織で扱うデータは感覚的に種別を想起しやすい反面、感覚に頼ると重要な切り口を見逃す可能性があります。これを避けるために、MECE(Mutually Exclusive, Collectively Exhaustive)な分け方を模索し、多様な切り口に触れることが重要だと感じました。 退職分析で考慮すべき点は? 私の業務では、月次で退職分析のデータを集計しており、分析の切り口をいくつか決めてデータを蓄積しています。退職関連の指標は、年度を通して初めて結果の出るものが多く、年間を通した考察を3月末までのデータで行っています。その際、現行以外の切り口でもデータを分析する必要があるのではないか、と常に考えています。 残業報告の改善点は? また、全社の残業報告を担当しており、毎月、残業代と残業時間の集計および考察を行っています。比較の切り口として、前月との比較、昨年同月との比較、部署別の基準を超えたスタッフ数を用いています。昨年比で残業代が減少したとしても、スタッフ数にも変動があり、一人当たりの残業時間など、データの見方を工夫する必要があります。年度末の報告には、これらのポイントも含めていく予定です。 分析のさらなる深化は可能? 実務の中で、他にも分析を深めることができるデータがないか探してみることが必要です。特に、バックオフィス部門の費用の予実分析を担当していますが、変数が少なく、問題そのものの特定だけにとどまりがちです。これにより定性的な要因分析に発展してしまうのですが、分析の切り口を工夫すれば変わるのかもしれません。まだその感覚が十分に掴めていないため、グループワークなどで相談しつつ、さらなる改善を図りたいと思います。

データ・アナリティクス入門

目的を導くデータの羅針盤

最初に何を明確に? 分析に着手する際、何から手をつけてよいのかわからない状態でしたが、まずは「目的」を明確にし、何を知りたいのか、また改善点につなげるにはどうすればよいのかを意識しながらデータと向き合うことが大切だと実感しました。その上で、データ分析の前段階として、比較対象となる条件を整理し、どの条件や項目を設定するかを精査することが、結果の精度を高める鍵であると理解できました。 整理方法はどうする? 授業からは、細かい点まで明確に比較できるように各要素を分けて整理する方法や、項目を一覧化して理路整然と進める手法を学びました。また、その調査結果の意味や期待される効果について問いかけながら項目を設定する重要性、そして各データ項目ごとの感覚の違いを補うために他のデータを参照する必要性についても示唆を得ました。さらに、数字を加工して割合を算出しグラフ化する際は、情報の性質に応じたグラフ(要素間の割合には円グラフ、上下の数値比較には縦棒グラフ、要素間の比較には横棒グラフなど)を効果的に用いる工夫が求められると学びました。場合によっては、実数そのままで比較したほうが効果的なケースもあるという点も印象的でした。 ビッグデータをどう見る? また、スモールデータとビッグデータの違いに触れ、ビッグデータを扱う際には「クレンジング」に注意し、類似性の高いデータを抽出することで、過去のデータを新たな価値に変えていくプロセスの重要性も認識しました。データ分析は、目的と仮説に基づいた切り口の設定、データ収集、加工、発見、そして結論へのプロセスを着実に踏むことが不可欠で、見えている加工データと状況や根拠に基づいた解釈とを組み合わせることで、より説得力のある分析結果が得られると感じました。 広報戦略はどう考える? 具体的な広報戦略を考える際には、施策を大項目から小項目へと段階的に設定し、戦略の目的に沿ってPRのアイディアを複数仮定しました。その上で、各ツールの選択肢や条件を一覧化し、データを当てはめて比較検討することが効果的であるという実践的なアプローチも印象深かったです。 グループ作業はどう? グループワークでは、見えている加工データに状況や他の根拠・解釈を加えて分析する手法が強調され、その具体的な組み合わせ方や実例について、さらに深掘りして聞いてみたいと感じました。

データ・アナリティクス入門

実践で磨く解決力の秘密

プロセスはどう区別? 今週は、問題解決のプロセスにおいて、仮説を立てて検証し、解決策を考えるための考え方を学びました。まず、WHYの段階では、各プロセスを分けて考える手法の重要性を再認識しました。プロセスごとに名称や意味合いを設定し、母数や基準が異なる場合には「率」といった数値化の視点を取り入れることで、どの段階で数値が少なく、全体の推移がどうなっているかをバランス良く把握することが大切だと感じました。 対概念の効果は? また、原因の仮説を立てる際には、「対概念」という方法を用いることで、問題に関わりのある要素を洗い出し、それらを2つの対に分けることで、より幅広い視点から原因の可能性を探るアプローチの有効性を学びました。 A/Bテストの意味は? さらに、HOWの段階では、A/Bテストを通して仮説を実際に試し、データを集計しながら解決策へと繋げる方法について学びました。A/Bテストを行う際は、①目的と仮説を明確にすること、②一度に一要素ずつ検証すること、③条件(時間や期間など)を揃えることの3点が重要であり、これによりリスクを抑えつつ効果的な施策の検証が可能となります。 知識集約はどう進め? また、今回の学びを通じて、これまでの知識を集約し、プロセスを意識して丁寧に分析する重要性を再認識できました。仮説設定の根拠を明確にし、必要なデータを整理することで、より高度な分析に繋げるための前提意識を持つことが求められると感じました。 薬剤師業務の改善は? 一方、薬剤師業務のボトルネックの分析においては、業務を細かいプロセスに分解し、どの段階で時間と労力がかかっているかを明確にすることが、従業員の残業時間や患者の待ち時間短縮に直結する重要なポイントであると学びました。こうした検証を通して、設備の導入などの改善策の効果を試験的に確かめ、必要に応じて他の現場にも展開する判断材料とする考え方は、非常に実践的だと感じました。 A/B分析で見直す? さらに、部内でA/B分析を活用して、例えば店舗の処方箋枚数の伸び悩みという問題に対して、複数の要因を一つずつ検討し、原因を絞り込んだ上で対策を考える手法も学びました。これにより、問題の背景にある具体的な要因を多面的に理解し、適切な対策立案へとつなげることができると実感しました。

クリティカルシンキング入門

みるみる変わる!振り返りで学ぶ資料術

目標設定はどう考える? まず、資料作成に取りかかる前に、目標の設定が大切だと感じました。誰に向けて(ターゲット)何を伝えるのか(目的)を明確にすることで、相手の先入観や関心、思想の傾向を考慮しながら、反論などにも備える準備が進みます。次に、資料をロジカルな構成にすることを意識します。MECEやピラミッドストラクチャーなどを用いながら、あらましから入り、問題点の本質や分析、結論へと導く流れを設計します。具体的には、グラフや図などを活用し、収集したデータを分かりやすく表現することに努めます。また、反論や疑問への対応としてサブデータの準備も欠かしません。文言については、説明の際に話しやすいよう、無駄な言葉を省いて見出し的な表現で簡潔にまとめるよう心がけています。最後に、説明後にどこが良く、どこが悪かったかを振り返ることで、次回に活かす学びとなる点が大切だと感じました。 実務に活かす資料作成は? また、私はIT業界に従事している中で、資料作成が実務にも役立っていると実感します。たとえば、要件定義では、お客様の要望をどのように取り入れ実現しているかを、相手の理解レベルに合わせた分かりやすい資料で説明します。プロジェクト管理の場面でも、進捗やリスクの報告で、現状をデータに基づいて分析する際に、このスキルが活用されています。さらに、万が一のトラブル時には、要因の特定や改善の見込み、損失の大きさを資料化して報告する際にも役立ちます。これらの様々な場面で、分かりやすく伝えるための資料作成が重要な役割を果たしていると感じています。 伝達スキルの磨き方は? そして、「他者に伝える」というスキルを身につけるために、行動計画も策定しています。まず、資料作成の準備段階で、目的とターゲットを明確にし、ヒアリングやプロジェクトデータの収集、受け手の嗜好に合わせた準備を進めます。次に、MECEやピラミッドストラクチャーを意識し、図やグラフを用いてシンプルかつ分かりやすい文章で表現します。さらに、資料作成後は発表の工夫も必要です。たとえば、結論を先に述べる、専門用語を避けるなど、聞き手に配慮した話し方を心がけ、質問を受け入れるなど対話にも重きを置いています。最後に、発表後の振り返りと改善策を検討し、次回に活かすサイクルを繰り返すことが、より確実なスキル向上につながると考えています。

アカウンティング入門

視点変えると経営が見える!

魚屋の多様性ってどう? ライブ授業でのグループワークでは、「魚屋」という業態でも、扱う魚の種類、販売方法、さらには店舗運営の形態によって、必要な準備や資格、仕入れの方法が大きく異なることに気づきました。事業活動の形態が変われば、揃えるべき物や意識すべき数値も違ってくるため、視点、視座、視野を意識して考える重要性を実感しました。 3視点をどう捉える? 私は現在、人事採用や人材開発、労務に携わるポジションで働いています。今回、3つの観点―「視点」「視座」「視野」―から、事業活動にどう活かすかを考えてみました。 現場での視点は? まず、「視点」については、現場レベルで目の前の事象に注目し、売上や労働生産性、スタッフの稼働率など具体的な数字に焦点を当てることが重要だと思いました。これにより、現状や課題が見える化され、次期の採用においてどのような人材を求めるべきか、具体的な判断基準を導き出すことができると感じました。 経営の視座はどう? 次に「視座」ですが、マネジメントの立場から経営全体を俯瞰して、営業利益率や限界利益率、損益分岐点などの経営指標を確認することで、事業の収益・コスト構造を理解できます。こうした視点を持つことで、今後の経営方針や戦略的な意思決定に役立てることができると考えました。 市場の視野は何? そして「視野」については、外部環境や将来を見据え、市場規模や成長率、競合シェア、顧客生涯価値、新規顧客比率などのデータに基づいて、市場動向や顧客ニーズの変化を把握することが求められます。これにより、長期的な戦略や組織づくりに役立つ判断材料が得られると考えました。 3視点の統合は? これら3つの観点を組み合わせることで、数字から現場の動き、構造、そして未来の判断材料を導き出す整理ができたと感じています。 経営体験にワクワク? また、グループワークを通じて、経営者の立場に立って会社運営の疑似体験ができるアカウンティングの授業に大きな魅力を感じました。資金調達や設備投資、人員採用、研究開発、リスクマネジメントなど、実際の経営で必要とされる意思決定のプロセスを学べる点は、売上や利益の仕組み、コストや利益の構造を体系的に理解しながら戦略的な経営判断力と分析スキルを養う大きな機会だと感じ、非常にワクワクしました。

データ・アナリティクス入門

プロセス重視で解決策を見つける秘訣

解決策立案の重要性を痛感 今回は、問題解決のプロセスである「What」「Where」「Why」「How」の「How(解決策の立案)」について学びました。このステップでも、「What」「Where」「Why」同様、複数の仮説を立てることが重要で、仮説の質が問題解決の精度に大きな影響を及ぼすことを改めて実感しました。プロセスに分ける、対概念を活用し対に分けるといったアプローチを学びました。 最適解の選び方を知ろう また、最適な解決策を選択する際には、複数の判断基準を持ち、その重要度に基づいて重み付けを行い、基準を揃えて総合的かつ定量的に評価することで、決めつけや思い込みを排除し、客観性と説得力を担保できると学びました。 仮説検証をハイサイクルで さらに、仮説の確からしさを求めすぎず、仮説検証をハイサイクルで実施することで、より良い仮説検証が行われ、結果として本質的な解決策に結びつくことを理解しました。 共通の留意点とは? 「What」「Where」「Why」「How」の各プロセスで共通して留意すべきポイントは以下の4点です。 1. 目的と仮説を明確にする。 2. 複数の仮説を立てる。ビジネスフレームワークや「分ける」という概念を活用する。 3. 仮説を検証する際は、基準を揃え、分析結果を基に定量的に評価する。 4. 仮説の設定と検証をハイサイクルで行う。 計画策定に向けた意識改革 次期中期事業計画の策定時には、現場で培った経験や勘で導き出した答えを、ビジネスフレームワークを利用して正しいプロセスを一つずつ踏んで答え合わせする意識を持ちたいと思います。ビジネスフレームワークの選定、指標や基準の設定、仮説の構築、データの収集・比較・定量評価、仮説の検証、本質的な解決策の選択など、あらゆる場面で客観性と説得力を備えた事業計画を策定することを目指します。 日常業務での実践ポイント 日々の現場業務の中でも、以下の2点を意識して深く考える癖を身に付け、具体と抽象を行き来することを習慣化したいと思います。 - より高い視座とより広い視野でものごとを見つめるマインドセットを持つ。 - 仮説の確からしさを求めすぎず仮説検証をハイサイクルで実施する。 心に留めておくべきキーワードは「一つ一つ丁寧に」「プロセスを重視する」「胸を借りる」です。

データ・アナリティクス入門

データで掴む!プロダクト成長の鍵

定量分析の重要性は? 目的を明確に持つことや分析が本質的に比較であることを改めて理解し、以下の観点で新たな気づきを得ました。まず、定量分析の重要性です。適切な比較を行うためには、目の前の事象やデータだけでなく、「Aがない場合」といった事象の背景も考慮に入れ、比較対象を慎重に選定する必要があります。また、仮説を立てることで分析の精度を上げることができると感じました。 アプリ戦略と仮説の関係 現在、私はアプリのプロダクトマネージャーとして、プロダクト企画や戦略立案を担当しています。また、自社事業でアプリやプロダクトを使って事業成長戦略を描くというミッションを追っています。市場データや競合比較、ユーザーの売上データ等を用いて仮説を立て、精度の高い分析を目指しています。この手法は仮説の精度を向上させるための手段となり得ると思います。 ユーザーのペインとは? 分析が役立つと考えられる場面は以下の通りです。まず、ユーザーのペインがどのような数字に表れているかについてです。特に、弊社のヘルスケアアプリにおいて、ユーザー記録データの推移と一般的な健康データを比較し、特定のセグメントにおけるペインを特定できる可能性があります。また、国内外の市場比較から次世代市場の動きや外資企業の動向予測が可能になるとも考えています。 市場分析に必要なステップ 市場分析においては、目的の言語化が重要です。市場分析は主に「自社プロダクトの市場成長性と方向性決定のため」「自社事業成長戦略のポジショニング決定のため」の二つの観点を想定しています。目的ごとに仮説を立て、分析軸を決めることが必要です。具体的には分析目的をMECEで言語化し、優先順位を付けて最上位から着手します。何をどのように比較するか、仮説が本質的な目的から外れていないかを確認し、ゴールまでの計画を立てます。 データ分析で見える強みと弱み 自社プロダクトの分析には、「あるべき姿」と現状のギャップを言語化し、そのプロセスとしてデータ分析を活用します。市場ポジションの分析では、自社プロダクトの利用状況推移と同セグメントのアプリの一般的な状況を比較し、強みや弱みを特定します。また、ユーザーのペインを見つけるためにデータ分析を行い、アンケート結果やユーザーインタビュー結果を再評価し、インサイトを見出します。

戦略思考入門

戦略思考で拓く学びの未来

目標はどう決める? 戦略志向とは、適切なゴールを定め、現状からそのゴールまでの最速かつ最短の道筋を描くことだと改めて実感しました。また、バリューチェーンの視点をより深く理解することで、生産性向上のヒントが得られることを痛感しました。今まで「分かったつもり」で進めていた部分を改め、指数関数的な変化に対して敏感に反応する必要性を感じました。 返報性を活かすには? さらに、返報性の原則を戦略的に活用する重要性にも気づきました。本質を見抜き、仕組みを捉えるためには、とにかく実践して自社の3C分析を試みることが大切だと感じています。同時に、最新のテクノロジーや新たな知識を継続的に学び続ける必要性も強く感じました。 規模調整はどうする? 規模の経済性については、コンサルタントの数が増えることで、一人当たりの固定費を下げる可能性があると理解しました。しかし、社員を増やしすぎるとコミュニケーションや各種管理コストが増大するため、フロントの生産性を最大化できる最適な規模を見極めることが非常に重要であると考えました。また、習熟効果においては、入社後の成長過程や、先輩の知見を若手に効率よく移転する仕組みを再評価すべきだと感じました。 AIで採用は変わる? ネットワークの経済性の観点から、金融業界以外でも適切なコンセプトを設定することで採用決定にかかるコストを削減できる点は大いに示唆に富んでいました。目の前のお客様への対応に加え、外部環境そのものの変化、特に生成AIの進展によるリクルーティングビジネスへの影響を、より深く分析する必要性があると痛感しました。指数関数的に進化する技術に遅れをとらないため、自社でもその活用方法を積極的に模索していく所存です。 採用戦略はどう進化? 最後に、データに基づいた人材発掘や自動化された評価・選考、企業ニーズの高度な分析、最適なマッチング、リモート面接・契約支援、さらには入社後のパフォーマンス追跡といった、一連のリクルーティングビジネスのバリューチェーンについて学ぶ機会は非常に有意義でした。また、自社のビジネスプロセスの本質を見極め、2フロア分の家賃負担と8割の在宅勤務という現状を踏まえ、社員の最適な増員シミュレーションを行うことで、固定費の軽減と利益率の向上を図る重要性を再認識しました。

クリティカルシンキング入門

問い続ける力が未来を創る

初めての学びは? Week1からの学びを振り返り、重要と感じた項目を整理しました。これを同僚に伝えるべきだと考えています。 問いをどう継続? まず、「問いを意識し続ける」ことが大切だと感じました。問いの意識を緩めてしまうと、物事を漠然と受け入れてしまうリスクがありますので、常に問いを意識し続ける習慣が必要です。また、経営者などの上位層の視点で問いの意味を考えることも重要です。現在のポジションの考え方では上位層の課題を理解するのは困難ですので、上位層の視座、視野、視点で問いを考え、課題を具体化する必要があります。 常識に挑む理由は? さらに、「そもそも」を意識し続けることが大切です。人は現在の業務を素直に受け止め、変えたくないと思う傾向があります。しかし、常識やルールに対しても常に疑問を持つことが求められます。資料作成も軽視せず、理解を早めるためのひと手間を惜しまないことが重要です。打ち合わせを口頭のみで行うのは相手に失礼であり、時間を浪費する行為ですので、資料を前提として、効果的に理解を得るための工夫を心がけるべきです。 経営層の視点は? 経営企画を担当している立場としては、様々な問いを持ち、課題や施策を検討していきたいと考えています。例えば、「全社の売上・利益を最大化するには?」といった問いに対する解答を見出すため、経営層・上司の視点を意識し、必要な情報を捉えることが重要です。また、根拠となるデータ収集・分析も重要なプロセスであり、そのための環境整備にも取り組んでいきたいと考えています。 報告の意義は? 業務上、毎月定例の業績報告があり、課題や施策の検討機会を得ることができます。この報告準備を課題・施策を考える契機とし、報告対象である経営層が必要とする情報を仮説しながら組み立てることを継続的に実施したいと思います。 研鑽の成果は? 自己研鑽の一環として、同僚や部下へのレクチャーを行うことで、自分のスキルアップにも繋がると考え、社内で勉強会を開催していきたいと思っています。勉強会の内容は、業務上でのクリティカルシンキングや戦略的思考を取り入れたものにし、業務と関連させることで理解を深めてもらいたいと考えています。開催後には、内容が本当に役立ったかを問い続け、常に反省し、内省する意識を持ち続けたいと思います。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right