データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

データ・アナリティクス入門

仮説とデータで切り開く未来

データ分析の流れはどうなる? 講座全体を通して、データ分析の流れを構築する大切さを改めて認識しました。どのような状況から仮説を立て、どのデータセットを用いて表現するかといったストーリーを意識することができました。各種フレームワークや分析、表現の手法はあくまでメソッドであり、講座前に自学していたため、今回はそれらの手法をいかに組み合わせてゴールに近づくかが重要だと感じています。 会社での分析はどう進む? 現在、新しい会社で財務会計を担当しており、上記の資料やデータを集めながら一工夫加えた分析と仮説を展開する予定です。具体的な運用はまだ未定ではありますが、原価や経費、売上のデータ分析にも今後取り組んでいきたいと考えています。 学びの道はどこへ? 以前から学びたいと思っていた分野ですので、今後の学びの方向性として以下の点を進めていくつもりです。まず、統計学をきちんと学び上げ、社会人向けの良書や統計検定の復習を通じて知識の向上を目指します。また、今回の講座で学んだマーケティングや他の考え方とデータ分析を組み合わせるため、以前かじったマーケティングについても更に深掘りしたいと思います。 ITスキルはどう磨く? さらに、Python、SQL、データベース構築、クラウド技術など、データ分析に必要なIT分野の知識も広げる計画です。資格検定の受験も視野に入れながら、体系的に学んでいきたいと思います。

クリティカルシンキング入門

データ分析で新発見!視点の転換術

売上分析の課題とは? 商品に関する売上分析を行う際、数値データを基に顧客層を分類して分析を進めることがあります。しかし、その分類方法に悩むことが少なくありません。分類後、もし特に傾向が見られなかった場合、それは新たな発見と受け止め、他の視点から見直す機会とすることで、時間を有効に使いたいと思います。 データを効果的に分解するには? 売上データの分解に関しては、講義で学んだように「年代」という一つの軸でも様々な区分が可能です。10歳刻み、または18歳以下、22歳以下、39歳以下など、異なるグルーピングによって見えてくるデータが変わります。分解時には、他にも分け方の可能性がないかを考えていくことが重要です。 結論を急がないための思考法 データからの考察を行う際、結果が見えた時点で急いで結論を出しがちです。しかし、その前に「本当にその結論で良いのか?」と疑問を持ち、再度見直す時間を設けるように心掛けたいです。 視覚的分析がもたらす効果とは? まずは視覚的にデータを確認することが肝心です。数値を頭の中だけで捉えるのではなく、見やすい表やグラフを作成し、比率や色を効果的に使うことで、直感的に理解できるよう努めます。そして、分析結果を迅速に分解するために、どのように分類するかということに特別な時間をかけるのではなく、分解した後で何が見えてきたのか、次にどう行動するべきかという考察に時間を注力したいと思います。

データ・アナリティクス入門

問題解決力を向上させる仮説の立て方

仮説設定の重要性とは? 問題解決プロセスにおける「why」(原因分析・追究)や仮説について学びました。特に重要なポイントは次の2点です。 1. 仮説は複数立てること: - 「Aである」だけでなく、「Bである可能性」や「Aではない可能性」など、さまざまな仮説を立てて決め打ちしないこと。 データをどう活用する? 2. 仮説同士に網羅性を持たせること: - データを評価する際、「何を見れば良いのか」「何と何を比較すれば良いか」「意図をもって何をみるか」といった視点を持つことが重要です。 - 仮説を確定させるためのデータだけでなく、「比較するための」データ収集も忘れてはいけません。 - 関連性のあるデータをより多く集めて分析することで、意思決定の精度が高まります。 進捗管理にどう活かす? この学びは、個人の事案対応力(受付件数と解決件数)や進捗が早い人・遅い人の原因追究(最終的には対策まで)に活用できそうです。日々の進捗管理と並行して、個人の適正業務量や対応方法の評価を行い、現行の運営が正しいかを検証するのに役立ちます。 業務適正の客観評価が必要? 現状を定量分析し、意図的に仮説を持って原因追究を深めることで、より良い業務推進力を発揮させるための手立てを見つけたいと考えています。担当者個人の特性を一旦置いて、より客観的に業務の適正さを評価することが必要だと感じました。

データ・アナリティクス入門

視野を広げる学び方の発見

学びの振り返りはどのように? これまでを振り返り、学びを得たことを自分の言葉で再度まとめることができる場があり、復習に繋がりました。また、リアルタイムでの講義には参加できなかったものの、自分一人で考えるだけでは視野が狭くなる可能性があるため、参加できなかったことが悔やまれます。 分析のストーリーが重要? その中でも特に印象的だったのは、スライドで示された「やみくもに分析しない。ストーリーが大事!」という点です。傾向をつかみ、特に見るべき箇所を明らかにし、網羅的にデータを収集して分析することの重要性が強調されていました。これにより、言語化・教訓化・自分化が進められると感じました。 自己研鑽と業務改善のステップは? 学習方法については、自身の癖を認識しているため、現在バイアスに押し負けないように自己研鑽に励みたいと思います。特に、問題解決が業務の中心であるため、そのステップに基づいて業務を進めたいと考えています。また、過去の経験則で決め付けることが多い内部問題の洗い出しと改善にもつなげていきたいです。 業務指標の整理はどうする? さらに、毎月提供される業務指標が様式も保管場所もその時期もまばらであり、単体に存在している現状があります。これを単体で取り扱うのではなく、日々起きる問題に備えてまとめておくべきだと感じました。目的に合わせて必要なデータをいつでも引き出せるように整備しておきたいと思います。

クリティカルシンキング入門

問いと内省で開く成長の扉

問いの出発点は? まず最初に、常に問いを立てる姿勢が大切だと感じています。抽象的な問いをそのまま受け止めず、具体的な内容に落とし込むためには、出発点そのものを疑うことが必要です。自分が今何に答えようとしているのか、常に意識することで、無駄な情報に振り回されるのを防げると考えます。 学びは実践できた? 講義を受けたときは学んだ気になっていた部分も、実際に実践してみると忘れてしまっていることが多いと痛感しています。そこで、反復して復習し、学びを確実なものにする努力が必要だと感じました。 問いと仮説は合ってる? また、データ分析や示唆出しの骨子を作成するときは、まず何に答えようとしているのか、その問いと仮説を明確に立てることがポイントです。資料作成に熱中するあまり、本来の目的から逸れてしまわないよう、問いに立ち返ることが効果的だと思います。 フィードバックは活かせる? さらに、月次の振り返り発表では、他のメンバーの資料を事前に読み込み、フィードバックの質を上げることに努めています。普段、上位の方々との会話では迎合しやすい自分を見直し、しっかりと自分でイシューを考える意識を持つようになりました。 内省で成長中? 毎日終業前の15分間は内省の時間として、今日学んだことが実践できたかを必ず振り返るようにしています。この内省を通して、小さな気づきを積み重ね、常に自己成長を意識するように努めています。

クリティカルシンキング入門

グラフと装飾の新発想で資料改善!

グラフ選びの理由は? グラフの選び方について、これまでは感覚的に選んでいましたが、今回の講座で得た知識との差異はありませんでした。しかし、具体的に「このような場合はこのグラフを選ぶ」という言語化ができていなかったため、今後は理由を持ってグラフを選びたいと考えています。 文字装飾の見直しは? 文字装飾の選び方についても学びがありました。装飾は「付け足す」のではなく、「削る」ことが重要だということです。学生時代に、赤字や太字、下線で強調した際に「やりすぎだ」と言われた経験もあり気を付けていましたが、特にタイトル位置では装飾が不要であるという点は新たな学びでした。 報告資料の工夫は? 分析データの報告時にこれらの知識を活用したいと考えています。普段は分析データに触れない他部署の人に報告資料を送ることがありますが、ここで適切でないグラフが使われていたり、全体の構成が不明確だったりすると、受け取る側が混乱してしまいます。そのため、「何を伝えたいか」に焦点を当てて資料を作成していきたいと思います。 発信方法の確認は? 具体的には、次のような行動を心掛けたいです。まず、伝えたい目的やメッセージを明確にし、その次に、どの順番で何を並べるかスライド全体の構成を考えます。そして、必要な文や適切なグラフを配置し、補足や強調は最低限に留めます。最後に、読み返しながら、伝えたいことが相手に無理なく伝わるかを確認します。

データ・アナリティクス入門

振り返り文に最適なタイトルは以下の通りです: 「フレームワークで広がる仮説の世界」

--- 仮説構築の新たな視点を得るには? 複数の仮説を持ち、複数の切り口を持つ重要性を改めて実感しました。その仮説を考える際にフレームワークを活用できる点は新たな気づきでした。マーケティング戦略を考える際の4Pフレームワークを使うことで、偏りのない仮説を構築するのに役立つことを実感しました。これにより、今後の仮説構築の幅を広げることができると感じました。 戦略フレームワークを業務でどう活用する? さらに、3C、PEST、5Forcesなどの戦略フレームワークも活用できるのではないかと考えています。実際の業務で各フレームワークを使い、仮説構築を試みるつもりです。 四半期を営業1タームで動かしているため、週次での分析やアクションが求められる環境にあります。分析の機会は多いものの、スピードも重視されます。業務において仮説構築をする際、どのフレームワークが活用できるか、また仮説の質と結論を導く時間軸のバランスを取れるかを実践で試し、見つけていきたいと思います。 全体会議前のデータ分析で何を試みる? 具体的に試みるアクションとしては、毎週月曜日の全体会議前に前週のデータを使って結果および今後の動向分析を行います。その際にフレームワークを利用して複数仮説の構築を試みます。これまでの経験に基づく仮説と、その逆説を並行して作成し、フレームワーク活用時の仮説との差異も合わせて見ていきたいと考えています。 ---

データ・アナリティクス入門

仮説で拓く学びの冒険

仮説の定義は? 仮説とは、ある論点に対する仮の答え、または分からない事柄に対する暫定的な解答です。これには「結論の仮説」と「問題解決の仮説」の2種類があり、各仮説は過去、現在、未来という時間軸によって内容が変化します。 複数視点の意義は? 仮説を立てる際は、決め打ちせずに複数の視点から検討することが重要です。異なる切り口で仮説を構築し、各仮説に網羅性を持たせるよう意識しましょう。 問題解決の手順は? 問題解決のためには、「What(問題の明確化)」「Where(問題箇所の特定)」「Why(原因の分析)」「How(解決策の立案)」という4つのステップに沿って進めると効果的です。 仮説活用のメリットは? 仮説を正しく活用することで、各自の検証マインドが向上し、説得力が増すと同時に、ビジネスのスピードや行動の精度の向上が期待できます。これまでの経験則や直感に頼るのではなく、ゼロベースで思考し、決め打ちせずに複数の仮説を検討することが求められます。 多角的分析は効果的? まずは、3Cや4P分析を用いて多角的に仮説を立てることから始め、ヒト・モノ・カネといった様々な切り口で網羅性を意識することが大切です。実践の際には、一つの仮説に固執してデータ収集に走るのではなく、複数の視点から検証を重ねることで、比較対象との条件を同等に保ちながら分析を進め、精度の高い答えに導くことが期待されます。

データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

データ・アナリティクス入門

仮説立ての新技術でユーザー獲得倍増へ

仮説立ての重要性をどう理解した? 仮説を立てることについての理解が深まりました。これまで、仮説を考えるプロセスがわからず、思いつきや一部のデータに偏った仮説立てをしていました。それがよくないと気づいてはいたものの、他の手段を考える余裕がなかったり、時間が限られていたりして、そのままにしてしまっていました。しかし、今回の学習により、3C(市場・顧客、競合、自社)を網羅して複数の仮説を立て、その上で4P(商品、価格、場所、プロモーション)のフレームワークを活用して網羅的に検証することが大事だと理解しました。 新規ユーザー獲得の戦略は? この学びを二つの業務において活用したいと考えています。 まず、自社サービスの新規ユーザー獲得導線の増強に活用したいと思います。現在、オウンドメディアの記事がある程度の検索表示回数や順位を保てるようになっているので、さらなる表示回数の増加と新規登録への導線強化を目指しています。具体的には、メディアの3Cのうち「市場」と「競合」を4Pのフレームワークを使って網羅的に検証し、新しい仮説を立てて実践してみたいと考えています。 既存ユーザーへのアプローチは? また、既存ユーザーについても同様に4Pフレームワークを活用し、新規獲得に向けた分析を行います。具体的には、現状のユーザー行動を分析し、ゴールまでの導線を仮説立てして検証し、改善策を見つけ出したいと考えています。

クリティカルシンキング入門

データ分析で得る新たな視点と知見

分解の効果は何? データを分解することで、より多くの知見を得られることを実感しました。特に、ある特徴が一つの切り口で現れた際に、それだけで答えを決めつけると他の観点から見ると誤りであることがあることに新鮮さを覚えました。答えが見つかったように見えても、それはあくまで仮説であり、しっかりと検証することが重要だと感じました。 現状をどう把握する? ITシステム品質保証チームの今後の戦略を立てるにあたり、まず現状を把握したいと思います。そのために、システムの品質評価を分解し、現状に対する課題を見つけ、知見を得たいと考えています。具体的には、ユーザーが5段階で評価したデータの平均値であるNPS平均を分解していきます。 どの切り口が有効? まず、MECEを意識しながら様々な切り口を考えます。層別分解としては、ユーザーの属性別や単価別を検討します。変数分解としては、評価の平均は合計値を評価数で割ることで得られるため、5段階各評価ごとの合計をグラフ化します。また、評価数の分布や1ユーザーあたりの評価回数の層を作り、さらに分解して考察します。プロセス分解としては、ユーザーが新規登録してからサービスを利用し終えるまでの流れをプロセスに分けて、各段階での評価がどの程度であるかを分析していきます。 検証の重要性は? 以上のように、さまざまな観点から分解することで知見を得ることを目指します。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right