クリティカルシンキング入門

数字で読み解く未来への気づき

どんな切り口が有効? データはそのままでは価値を見いだすことができません。まずは全体像を把握し、いくつもの切り口から分解することで、グラフ化するなどして視覚的に整理してみる必要があると感じます。その上で、どういった単位で分解すればより意味のある情報になるのか、仮説を立てながら試行錯誤していくことが重要です。 数字で見直しは? また、これまで経験則で行ってきた業務を、数字という具体的な形で捉え直すことで、いくつかの切り口から再度分析する機会が得られると思います。そうすることで、新たな気づきが生まれ、業務の質の向上や効率化につながる可能性を感じました。

データ・アナリティクス入門

データが語る平均の真実

平均計算のアプローチは? 平均の取り方やデータのばらつきを様々な方法で検証することで、より正確な分析が可能になると実感しました。ビジネスにおいて平均値が用いられる場合も、その計算方法や元となるデータの内容をしっかり確認する必要があると考えています。 データ集計の工夫は? また、ERP導入時に用いられるデータ集計機能について、顧客と集計方法を決定する際に今回学んだ考え方が非常に参考になると思いました。さらに、見積提示の際に平均工数を算出する必要がある場合、要件によって結果にばらつきが出るため、算出方法を工夫しながら検討する必要があると感じています。

データ・アナリティクス入門

目的と仮説で拓くEC成功ストーリー

目的は明確? 私は自社ECサイトの制作に携わっており、グーグルアナリティクスやその他のアクセス解析ツールを用いて分析を行う機会があります。その際、まず目的と仮説を明確にし、データに向き合う前に自分自身やチームメンバーと共有することが重要であると実感しています。 分析報告は納得? また、分析結果を報告する際にも、目的や仮説を伝えるように心がけています。これまでデータそのものとそこから読み取れる情報、そしてそれに基づく提案を中心に報告していましたが、仮説も合わせて示すことで、第三者にとってより理解しやすく納得のいく内容になることに気づきました。

クリティカルシンキング入門

問いの力で見える解決のヒント

解くべき本質は? 今回のケースでは、分析に入る前に「本当に何が解くべき問題か」を明確に設定することの重要性を学びました。データをただ眺めるのではなく、目的や意思決定につながる問いを先に定めることで、分析の無駄が省かれ、その結果、解決策の質が向上することを実感しました。 業務改善の鍵は? 自分の業務でも、売上分析やCRM施策を検討する際、まず「何を解くべきか」を明確にする必要性を感じました。表面的な数字を見るだけでなく、「原因をどの要素に求めるか」という視点でイシューを設定することで、分析の効率が上がり、改善策も的確になると実感しています。

データ・アナリティクス入門

仮説で切り拓く未来への道

仮説で何が変わる? 問題解決の第一歩として、仮説を立てる方法を学びました。仮説にデータ分析の視点を加えると、その説得力や信頼性が一層増すことを実感しています。また、仮説を立案することにより、自分の行動の筋道が明確になり、周囲への説明もしやすくなります。 3Cや4Pの意味は? 仮説の立て方については、特に3Cや4Pといったフレームワークを活用し、複数の仮説を網羅的に考えることの重要性を学びました。決め打ちにせず、幅広い視野で仮説を検討することで、日々の小さな問題にも柔軟に対処でき、周りを巻き込んだ改善活動にも効果的に取り組めると感じています。

アカウンティング入門

損益から読み解くビジネスのヒント

損益計算書をどう捉える? 損益計算書の基本構造を学び、そのデータからビジネスモデルや収益構造を読み解くことが可能であるという点に気づきました。具体的には、どのような価値を提供し、そのためにどの部分へコストを配分し、どのような売上構造を構築するかを、損益計算書の情報だけでも多角的に理解できると実感しました。 なぜ経営視点が必要? この学びを踏まえて、自社サービスが提供すべき価値や、必要なコストの投入箇所に対する基本的な視点が不足していることに気づきました。今後は、今回得た知識を活かし、より具体的な事業分析に取り組んでいきたいと考えています。

戦略思考入門

選択の極意:数値で裏付ける挑戦

戦略の選択方法は? WEEK4では「戦略における選択(捨てる)を身につける」というテーマを通して、選択する際には定量的なデータの分析が不可欠であることを学びました。同様に、WEEK5では数値化によって物事を可視化する手法を学び、定量化の重要性を再確認することができました。 新製品策の評価は? 現在の職場では、従来の製品とは異なる新しい製品の開発が求められています。新たな取り組みでは、多くの改善策や施策が立案されますが、その効果を数値で評価することで、結果が低いものを排除し、優先順位を明確にして着実に実行していきたいと考えています。

データ・アナリティクス入門

偏差値から広がる分布分析

データの視点は何? データは数字、グラフ、そして数式という3つの視点から捉えることができます。数字の場合、代表値と分布の両面から情報を集約しますが、件数の多いデータを比較する際は、必ず分布の違いも考慮する必要があります。一方、数式では回帰分析とモデル化の手法が用いられます。 標準偏差の可能性は? 学生時代には偏差値を通じて標準偏差を知りましたが、営業成績の分布について考察する際に、数字やグラフから確認していたものの、実際に標準偏差を活用する経験はありませんでした。そこで、今後は標準偏差を用いた分布分析に挑戦してみたいと思います。

データ・アナリティクス入門

平均だけじゃない!データの真実

平均と偏差の活用は? データ集団の分析においては、どの平均値を採用するかが重要です。数字の性質を把握するために、平均だけでなく標準偏差を確認し、データのばらつきを評価することが大切だと感じました。なお、エクセルには標準偏差の計算関数が用意されているため、計算の手間はかからず助かっています。 仮説と切り口は? 業務で数字データを扱う場合、まず目的と仮説を明確にし、その上でどこから切り口を作るかを整理して分析することが必要です。単に数字を断片的に眺めるのではなく、全体の流れや構造を意識してデータを読み解くよう努めています。

クリティカルシンキング入門

グラフでひらく新発見の扉

グラフ選びの意図は何? データをグラフ化する際には、何を見たいのか、何を伝えたいのかを明確に意識してグラフを選ぶことが大切であると認識しています。しかし、実際の現場では、意図がはっきりしていないまま時間の制約の中で作業を進めるケースも多いように感じます。 複数グラフで新発見は? そのような状況では、生のデータを複数のグラフで表現することで、思いがけない発見が生まれることがあります。こうした新しい気付きから、伝えたい内容を具体化していく方法は、スピード感を持ってデータ分析や資料作成を進める上で非常に有効だと考えました。

クリティカルシンキング入門

データが語る、勝利のヒント

データで現状把握は? マクドナルドの現状分析を通して、市場や競合環境の把握において、データの可視化がいかに重要かを学びました。事実を明らかにすることで、正しいイシューの設定が可能となり、相手にも理解してもらいやすい情報提供ができることを実感しました。 業務改善の方法は? また、基本的な業務においても「分析を使ってイシューの方向性を決める」「グラフにして視覚的に示す」「表をひと手間かけて加工する」といった取り組みが役立つと感じています。今後、イシューを明確に共有しながら、より良い資料作りに活かしていきたいと考えています。

データ・アナリティクス入門

ひと工夫で伝わる説得力

どうして結果が違う? 同じデータでも、どの切り口で処理するかによって得られる結果や示唆は大きく変わることを実感しました。 どうやって説得する? また、単にクオリティの高い分析を行うだけでなく、分析結果をもって相手を納得させるための説得力あるアウトプット作成が重要だと感じています。 伝え方は正しく? さらに、業務においては分析を実施するだけでなく、その結果を踏まえて伝えたい内容を納得のいく形で資料化することが求められます。本講座で学んだ図解の手法を活かし、読み手に違和感のない成果物作成に努めたいと思います。
AIコーチング導線バナー

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right