戦略思考入門

市場の変化に対応するための柔軟な思考法

柔軟な発想を持つ重要性 物事や概念に固執しすぎないことを常に意識しています。特にライバルに対抗しすぎると、偏ったアイデアしか生まれないため、柔軟な発想を持つことが重要です。フレームワークを用い、多くの人と抜けのないアイデア出しを行うことが肝要です。 常に競争優位性を意識するには? 市場は常に変化するため、最初の計画段階からImitabilityがあるかを考え、戦略に固執せずに常に競争優位性を意識しています。ベストな方法は常に変わると考え、多方向から物事を捉えるべきです。提出や報告前には必ず別の捉え方や考え方がないか確認しています。 海外進出での強みをどう活かす? 業務内容においては、海外進出拠点のVrio分析やフレームワークを活用して、新市場での自社の強みや差別化を図っています。また、ポーターの基本戦略3要素に関しても、それぞれにリスクがないかを確認します。競合他社の差別化戦略をフレームワークで分析することも行っています。 キャリアの差別化戦略は? キャリア面では、自分の差別化戦略を考え、どの部署で自分の強みを発揮できるか、また母数が大きいかを見極めています。 思考を整理するためには? 日々の業務面では、計画の段階からフレームワークの使用をファーストステップとし、論理的に考えを整理する思考プロセスを身に付けることが必要です。報告や発表前には自問自答し、抜けがないかを確認しています。また、多くの打ち合わせに参加し、事業の進捗状況に常に気を配るよう心がけています。市場は変動し、自分のやり方も古くなることがあるためです。 事業戦略で広い視野を持つ 事業面では、進出前・進出後に市場の動向に気を配り、売り上げが安定しているからと安どせず、常に他の戦略を模索する広い視野を持つようにしています。 自分の価値をどう評価する? キャリアに関しては、まず自分の価値をVrio分析で評価し、組織や社会のVrioも分析します。自身がどこで尖っていけるかを考え、その成長戦略ルートを検討します。 メモを取ることの重要性 最後に、メモを取ることは非常に大切です。アナログな方法でも自分の思考キャパシティー的に必要なので、無理にでも癖づけるようにしています。

戦略思考入門

規模と範囲の経済性で未来を拓く

規模と範囲は何? 規模の経済性と範囲の経済性についての理解を深めました。 効果はどう現れる? 規模の経済性とは、生産量が増えるにつれて、1単位当たりの生産コストが低下する効果を指します。一方、範囲の経済性は異なる製品を同じ設備や人材で生産することにより、コストを削減できる効果です。これらの概念は企業が大規模化や事業多角化を考慮する際、メリットやシナジーを考える上で重要です。 例外はあるの? ただし、規模の経済性が当てはまらない場合もあります。例えば、生産量が過剰になると管理コストが増加したり、設備が老朽化して稼働率が低下したり、需要が限定的で大量生産のメリットが得られないこともあります。同様に、範囲の経済性についても、新製品のために新しい設備投資が必要だったり、新製品と既存製品に関連性がなかったりする場合には該当しません。 過剰は問題? つまり、規模や範囲を過剰に拡大すると、無駄なコストが発生し経営が非効率になる場合があります。そのため、需要動向や自社の経営資源を考慮し、適切な規模と範囲を見極めることが重要です。 効率はどう実現? 現在の部署では、実店舗のバックオフィス業務や間接業務の移管を受けており、その効率化と高品質化を進めています。100店舗で10工数かかる業務をただ1000工数で受け持つのではなく、習熟効果や自動化を活用して500、400と圧縮することで効率化を図っています。これからも規模の経済性を活かし効率化と高品質化を追求していきます。また、同じオフィス内で行うことで範囲の経済性も効かせられないか検討しています。 新たな提案のヒントは? 新規業務においては未知の領域に触れる機会が多くなり、顧客や競合他社も増えています。そこで、これまで学んできたフレームワークを活用できると感じています。新規業務の提案を行う際には、市場・競合・自社の情報整理を行い、顧客設定やゴール設定を明確にし、定量的な情報を基に説得力のある移管提案を目指します。 経験はどう重ねる? 現状では、フレームワークの有効な活用はもちろん、使用頻度もまだ不足しているため、まずは経験を積むことを重視して業務に取り組んでいきます。

データ・アナリティクス入門

視点が変わるデータ再発見のヒント

代表値は何を示す? データ分析においては、代表値や標準偏差といった基本指標を正しく理解し活用することが大変重要です。代表値には単純平均、加重平均、幾何平均、中央値などがあり、分析の目的に合わせた使い分けによって、より正確に傾向を読み取ることが可能となります。なお、実際の業務では最頻値を確認する場面もあるため、必要に応じて取り入れることが望ましいです。 集約手法の選び方は? また、データの集約方法にはさまざまな手法が存在し、誤った方法を用いると解釈や意思決定にズレが生じる可能性があります。そのため、常に目的に合ったアプローチを意識し、適切な手法を選択することが重要です。さらに、データのビジュアル化では、表現方法を工夫することで数字だけでは気づきにくい傾向を視覚的に捉えることができるため、状況に応じた最適な手法の選択が求められます。 ダッシュボードはどう使う? 施策の効果検証や日々の数値を確認するためのダッシュボードの作成・管理は、私の業務において大変重要な役割を担っています。これまでも代表値の使い分けやデータのビジュアル化について意識してきましたが、今回の学習を通じて基礎部分を再確認することができ、より適切な方法を用いる必要性を実感しました。特に、ダッシュボードは自分だけでなくチームのメンバーも活用するため、見せ方や解釈しやすさに細心の注意を払っています。 新たな平均法は? これまであまり使用してこなかった加重平均や幾何平均についても、現在扱っているデータに適用できる場面を意識的に探していきたいと考えています。既存のデータを例に、新たな視点での分析に取り組むことで、今まで見逃していた傾向やパターンを見出せる可能性があるため、さまざまな集約方法を試し、状況に合わせた最適な手法を選択できるよう努力したいと思います。 グラフ表現の意味は? ビジュアル化に関しては、単にグラフを選ぶのではなく、なぜその形式が適切なのかという明確な意図を持って活用することが大切です。さらに、同じ種類のグラフであっても、表示する項目数や内容によって可読性や伝達力が大きく変化するため、見せ方の工夫や調整にも十分な注意を払っています。

クリティカルシンキング入門

デザインで伝える魅力と印象の技

グラフの選び方は? グラフの選択には意味があり、その種類によって伝わる印象が大きく変わることを学びました。何を伝えたいか、何を強調したいかに応じて、適切なグラフを選ぶ必要があります。これまで私は感覚的にしか理解しておらず、縦棒グラフと横棒グラフの使い分けや、それぞれのグラフの定義(どの場面に適しているか)について深く理解せずに使っていました。今後はこれらをしっかりと理解し、適切に活用していきたいと考えています。 フォント選びの理由は? また、フォントや色、イラスト、アイコンも同様に伝わるメッセージや印象を左右することを学びました。以前はグラフほど意識せずに使用していましたが、フォント選びに関しては特に自分の好み(例えば、Macではヒラギノ角ゴシック、WindowsではBIZ UDPゴシック)を重視していました。しかし、これからは読み手を意識し、伝えたい印象を考慮した上でフォントを選びたいと思います。 レイアウトはどうする? さらに、スライドのレイアウトも重要です。見せ方によって伝わる印象が変わり、メッセージの伝わりやすさも変化します。これまではデザイン性やその時の自分の好みでプレゼン資料を作成していましたが、この学びを機に、より読み手を考慮して改善していきたいと思います。 資料はどう伝える? 私自身、社内でのプレゼン資料や業務進捗資料の作成が多いので、学んだことを活かしていきたいです。具体的には、グラフをどのような意図で選択し、それぞれのフォントをどのような意図で選んだのか、はっきりと答えられるように意識します。また、英語の資料作成にもガイドラインに従いつつ、自分なりに試行錯誤して最適な見せ方やメッセージの伝え方を探っていきます。 顧客向け資料については、自チームのメンバーが作成することが多いので、アウトプット目的でメンバーに確認やアドバイスを行い、私自身の理解度向上を図ります。同時に、チームメンバーの意識も高めたいです。何を伝えたいのか、なぜそのグラフやフォントを選んだのかを明確にし、読み手の目線を意識して、わかりやすく伝わりやすい資料作成を目指していきます。

データ・アナリティクス入門

学びを実践へ!クロス集計から脱却する方法

業務に手法を活かすには? これまでの学びを通じて、「これは使える」という手法を早速業務に活用してみました。しかし、総合演習では「どれを選択するのか」を考えたとき、これまでの学びがまだ身についていないことを実感しました。また、分析に際してクロス集計に依存している自分の癖にも気づきました。他の手法は示唆されれば思いつくものの、依然としてクロス集計に頼ってしまいます。せっかく学んだものを生かし切れていないと感じ、今後は意識していろいろな分析手法を活用する必要があると痛感しました。数をこなすことでしか選択肢の幅を広げることは難しいと学べたことも良かったと思います。 プロセス分解で何が変わる? 問題の原因を明らかにする際にはプロセスに分解することが重要であると気づきました。当たり前のことですが、自分ではそれができていないという発見がありました。また、経験に基づいた仮説を決め打ちしてしまう癖があることにも気づかされました。プロセスに分解する利便性と、その方法が他者への説得力につながるメリットを業務における実績分析でも生かしていきたいと考えています。具体的な手法として紹介されたA/B分析は既に使用していたものの、それをA/B分析と認識していなかったため、目的や仮説設定、検証の項目が曖昧でせっかくの検証結果を生かし切れていなかったと思います。 需要縮小期にどう対応する? 私の扱う製品は急激な需要縮小期を迎えています。そのため、よく「時代の流れ」として片づけられることが多く、そこで分析が止まってしまっていました。しかし、本当にそれだけが原因なのでしょうか。私は「なぜそうなったのか」をプロセスに分解し、正しく理解することが解決策を得るうえで重要な鍵であると考えるようになりました。幸い、過去の業界・当社の実績データはあるので、まずはそれを改めて分析しようと思います。「時代の流れ」以外の要因がないかを探し、その要因に対処することで売上に貢献できるのではないかと考えています。決め打ちせず、様々な選択肢を探ることで、今よりも良い施策を打てるかもしれないと希望を持っています。

データ・アナリティクス入門

データ分析で広告効果を最大化する方法

サーチとコンバージョン分析のポイントは? 私は、定量データの処理方法や割合と実数値の使い分けについて学びました。広告のサーチ数やコンバージョン率を分析する際、実数値で成果を示すと共に、全体の成果に対する割合を表示することで、広告の効果がより明確になります。例えば、特定の広告が他の広告よりも高いコンバージョン率を示す場合、その差を強調するために割合を用いることが有効です。 リーチとフリクエンシーの効果的な可視化 データの加工方法や適切なグラフの選び方について学びました。リーチ(到達)とフリクエンシー(接触頻度)のデータをヒストグラムや折れ線グラフで視覚化することで、どの広告が最も効果的なリーチを達成しているか、または頻繁に接触されたが効果が薄い場合の改善点を容易に発見できます。 データクリーンルームを活用するには? 比較の重要性や仮説に基づく分析について学びました。データクリーンルームを活用する際、テレビとデジタル広告の重複接触を比較することで、効果的な広告の配置や接触頻度を見極める仮説を立て、そのデータを基に改善策を提示します。こうした定量的なデータとその適切な比較により、精度の高い分析が可能になります。 これらの学びを基に、分析プロセスの一貫性を保ちながらデータをより効率的に扱い、効果的な広告戦略を提案できるようになりました。 グラフを使ったデータの伝え方 グラフや可視化ツールを駆使することも重要です。データをグラフやチャートで可視化し、関係者にとって理解しやすい形で伝えます。特に、データの割合や実数値を比較する際には、視覚的に分かりやすいグラフを使用することで、複雑なデータを簡単に理解しやすくし、意思決定をサポートします。 どのように分析スキルを向上させるか? さらに、データ分析スキルの継続的な向上を目指します。新しいデータ分析手法やツールを学び、分析スキルを継続的に向上させます。広告業界で使用される分析ツールやシステムに精通することで、より効率的で精度の高い分析が可能となり、業務の成果を高めることができます。

クリティカルシンキング入門

グラフと色の魔法:伝わる資料作りの秘訣

グラフを選ぶ際のポイントは? 今週の学習を通じて以下のことを学びました。 まず、グラフ作成においては「他人に伝えること」を念頭に置くことが重要であると学びました。何を伝えたいかによって適切なグラフの種類は変わります。読み手に負担をかけず、一目で理解してもらえるように、自分の伝えたいことと合ったグラフを選択する必要があります。 文字情報以外での伝え方は? また、情報を伝える際には文字だけでなく、フォント、色、アイコンなども意識的に使うことが大切です。これにより、より印象に残る分かりやすいスライドを作成することができます。ただし、アイコンを使用する場合は、それがノイズとならないようメッセージとの整合を確認することが必要です。 資料の冒頭部分はどう工夫する? さらに、スライドに入れるメッセージについては、読んでもらえる工夫、例えば冒頭のアイキャッチやリード文の工夫が必要です。また、この場合にも図表との整合性を取り、協調したい箇所を意識することで、伝えたいメッセージをより明確に伝えることができます。 資料作成で大事なことは? 次に、具体的な資料作成についてですが、以下の点を意識しています。 企画書や提案書の作成では、興味を持って最後まで読んでもらうことが大事です。読みにくい文章になっていないかを確認し、その先が読みたくなるような冒頭のリード文を意識した資料作成を行います。 グラフの使い分けはどうする? 報告書や発表資料の作成では、データによって適切なグラフを使い分け、自分の伝えたいことと合ったグラフを選択することが重要です。 印象に残るスライド作りの秘訣は? 研修資料や業務マニュアルの作成では、伝えようとしているメッセージと書体が与える印象を揃えることが大切です。書体と共に、色についてもメッセージとの整合を意識し、アイコンを効果的に使ってより印象に残る分かりやすいスライド作成を目指します。アイコンを選択する際にも、伝えたいメッセージとの整合に注意します。 これらの点を踏まえ、資料作成を実践していきたいと思います。

データ・アナリティクス入門

データが語る学びの軌跡

どのプロセスが必要? 分析とは、データ同士を比較する行為であると捉えられます。そして、分析は仮説を立てることから始まり、目的や問いを明確にした上で、仮説設定、データ収集、そしてその仮説を検証するプロセスを踏む、いわば「プロセス×視点×アプローチ」が重要となります. どの視点が有効? 分析における視点としては、インパクト、ギャップ、トレンド、バラつき、パターンの5つが挙げられ、各々の観点からデータを多角的に検証することが求められます。一方、アプローチとしては、グラフ、数字、数式の3種類が存在し、状況に応じた手法の選択が大切です. どの代表値を使う? 数字によるアプローチでは、まずデータの中心位置を示す代表値を注視します。代表値には単純平均、加重平均、幾何平均、中央値などがあり、また、データの散らばりを示す標準偏差などを用いて、他のデータの状態を把握することが重要です。代表値についても、観点により複数の値が存在するため、適切な選定が必要です. 相関はどう読む? さらに、数式化の側面では、「欲しい結果に対して何か効いているか?」という視点で、相関関係を見いだすことができます。ただし、相関が必ずしも因果関係を示すわけではない点に留意しなければなりません. 今後はどう進む? 通常、業務においては年度別の件数や特定分野の傾向を、主に単純平均から読み取っていましたし、どのグラフで可視化するかに対して意識が十分ではなかったと感じます。しかし、今回の学習を通じて、目的を明確にし、どの視点でデータを見るべきか、どのアプローチが最適かということを、1つ1つ丁寧なステップとして考える重要性を学びました。また、相手に説明する際には、ビジュアルを活用することで情報がより伝わりやすくなることも実感しました. 次に何を分析? 今後は、何を分析したいのか、何を知りたいのかを明確にした上で、「代表値」「バラつき」「数式化」の各定義や使用すべき場面を理解し、目的に沿った手法を適切に選択しながら分析を進めていきたいと思います.

クリティカルシンキング入門

小さな数字の分解、大きな気づき

数字分解はどう考える? 数字を分解するという手法について学びました。まず、数値をWhen、Who、Howなどの要素に分ける際、①加工の仕方、②分け方の工夫、③分解の留意点に注意することが大切だという点を実感しました。たとえ分解した数値からすぐに有用な情報が得られなくても、それ自体が分け方に工夫が必要であるという気付きにつながります。 切り口は何が鍵? また、複数の切り口を見出すためには、目的や立場を踏まえて仮説を立てたり、データを表やグラフで表現してみることが効果的であると感じました。たとえば、ある施設の入場者数の減少を分析する際、切り口を4段階に丁寧に分けることで、減少の実態をより正確に把握し、次のアクションにつなげる経験が非常に印象に残っています。 MECEをどう活かす? MECEの考え方も学びました。全体を適切に捉えるためには、①全体集合体を部分に分ける(足し算)、②変数で分ける(掛け算・割り算)、③プロセスで分けるという三つの観点があること、そして問題解決のプロセスとしてWhat、Where、Why、Howの要素があることを再確認しました。重要なのは、まず全体を定義することだと感じました。 なぜなぜ分析は? 業務上の問題や課題解決に取り組む際、これまで自分の経験に基づく思い込みが原因となってしまうことに気づかされました。従来使用していたなぜなぜ分析は主観的な原因追及に陥りがちでしたが、今回学んだプロセスに基づいた分解手法で、より客観的に問題箇所を特定できると実感しています。 業務改善はどうする? 今後は業務において、GW明けから数字を分解する際に、①加工の仕方、②分け方の工夫、③分解の留意点を意識しながら進めていく予定です。実践を重ねる中で、常に複数の切り口で分析できるスキルの向上を目指し、既存の切り口が最適かどうかを検証しながら思考を鍛えていきます。また、MECEの考え方についても、モレがなくダブりがないかを確認しながら、業務に定着させられるよう努めていきたいと感じました。

クリティカルシンキング入門

ビジネス文書・プレゼン資料を一段上の品質にする方法

学習を通じて得た新たな知識とは? 今回の学習を通じて、適切なグラフの選び方やスライドの作成方法、ビジネス文書がどのように読まれるかについて多くの学びがありました。以下に、それぞれのポイントについて述べます。 グラフ選びでデータをより見やすく まず、グラフの見せ方についてですが、データの種類に応じた適切なグラフ形式を選ぶ重要性を感じました。例えば、時系列データには縦の棒グラフ、変化や経緯を表現したい場合は折れ線グラフが有効です。また、要素を表現する際は横の棒グラフ、要素間の比較には帯グラフが適しています。これにより、データが持つ意味を視覚的に明確に表現することができ、プレゼンの受け手にも理解しやすい情報を提供できます。 見る側に立ったスライドデザインは? 次に、スライド作成のポイントについて学びました。特に印象深かったのは、「見る側の視点に立って主題がわかりやすいように」作成することの重要性です。具体的には、グラフなどで見てほしい部分を強調するために矢印を使用することなどです。これにより、視覚的なガイドラインが提供され、見ている人がパッと理解できるスライドを作ることができます。 関心を引くビジネス文書の工夫 ビジネス文書に関しては、冒頭にアイキャッチを置く工夫が特に有用だと感じました。イメージが湧きやすい、意外性がある、具体的な理由や方法を知りたいと思わせるような要素を盛り込むことで、読む人の関心を引き付けることができます。これにより、実際のメールや案内文の返信率向上に繋がることを期待しています。 具体的な実践計画としては、リード向けメール作成の際には1日最低5件はアイキャッチを配置し、試行錯誤を重ねて改善を図るつもりです。また、フォロー結果を分析する際には1か月に1回以上、プレゼン資料の質とグラフの活用を意識して作成します。四半期ごとの報告プレゼン資料にもこれらの学びを反映し、より質の高い資料を提供することを目指します。 以上の点を踏まえ、今後の業務に活かしていきたいと思います。

クリティカルシンキング入門

プロジェクト管理に活かせるイシュー整理術発見!

イシュー整理の重要性 イシューについて整理しました。 まず、いきなり考え始めるのではなく、目的を明確にすることが重要です。問いや課題に対しては、その本質や解決の道筋を考え、可能な解決策をいくつかカテゴライズします。そして、本質に対しての裏付けや根拠を数値を用いて行うことが必要です。 プロジェクト管理への応用は? 私はSIerでプロジェクトマネージャーをしています。そこで、この方法をプロジェクト管理やチームの問題解決の場面で活用したいと考えています。新製品開発やソフトウェアプロジェクト、業務改善プロジェクトなどで、リスクや課題を効果的に管理し、進捗を安定させるために用いるつもりです。 イシューの特定と優先順位付けとは? イシューの特定と優先順位付けについては、プロジェクト開始時に潜在的な問題やリスクを洗い出し、イシューとして登録します。各イシューについては、影響度と緊急度に基づき優先順位を設定し、重要な問題から対処していきます。 進捗管理のシステムは? 次に、イシュー管理のプロセス設計です。イシューの進捗を継続的に監視するために、専用のツールやシステムを使用します。また、各イシューには責任者を明確にし、対応策を実行する担当者を決定します。 効果的なコミュニケーション方法は? コミュニケーションと報告の部分では、プロジェクトの進行に合わせて定期的にイシューのステータスをレビューし、必要な対策を講じます。そして、進捗状況や解決策について関係者に適切に報告し、情報共有を行います。 問題解決後の改善策は? 最後に、問題解決のプロセス改善です。イシューの解決後には、対応策の効果やプロセスを評価し、フィードバックを収集して改善点を明らかにします。さらに、解決したイシューの事例を文書化し、将来的なプロジェクトで活用できるようにします。 これらの方法を通じて、プロジェクト管理がより効果的に行えるようになると期待しています。

データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

「業務 × 使用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right