クリティカルシンキング入門

MECEで業務効率アップ!育休復帰計画

MECEの種類って何? MECEの種類には、大きく分けて層別分解、変数分解、プロセス分解の3種類があり、それぞれの分解方法を使い分けることが重要だと感じました。これらの方法を試すことで、自身の分析に最も適した分解手法を見つけることができると学びました。 クラウド相談で何が分かる? 私は、自分の業務でクラウド利用相談においてこの手法を活用できるのではないかと考えています。利用相談の内容を分解することで、利用者が抱える本質的な問題を分析する際に有効だと感じました。特にプロセス分解を用いることで、どのプロセスに問題があるのかを特定し、迅速に問題解決に結びつけることができると考えています。 復帰後の活用は? 来月から育児休暇からの復帰を予定しており、クラウド利用相談でこの手法を活用したいと計画しています。相談内容をプロセス分解し、問題の本質を把握できるように努めます。まずは相談者が何を望んでいるのか全体像を把握し、その中でどこに問題が発生しているのかを分解して特定し、より効果的に対処したいと考えています。

マーケティング入門

ターゲット分析で見つける売上戦略のカギ

ターゲット見極めの重要性とは? ターゲットを見極めることの重要性を学びました。例えば、特定の企業の事例では、同じ商品でもターゲットを変えることで売上や利益が伸びることを学びました。この過程を行うには、自社の強みと弱みを正確に分析し、それに基づき市場を分析して、強みを活かしながら差別化できる戦略を練る必要があります。また、参入しやすい市場には競合が多いことも考慮すべきです。 誰に売るべきかを定めるには? バックオフィス業務の中で自部署で考案したプログラムや商品を社内外で利用してもらうためには、誰に売るべきかを明確にしたうえで作成する必要があると感じました。企画や提案を行う際にもターゲットを明確にし、それに基づいた提案をするように心がけます。 強みと弱みの分析は何をもたらす? そこで、自社や自部署、自分自身の強みと弱みを一度明確にしてみたいと思いました。強みと弱みを把握することで、どのように売り込んでいくべきか、また足りないものは何かが明確になり、それが課題解決につながると感じています。

戦略思考入門

戦略で切り拓く自分だけの未来

戦略と戦術の違いは? 戦略と戦術は明確に異なります。戦略は、どの行動を採用するか、または採用しないかといった選択を行うことで独自性を生み出すものです。広い視野で物事を見渡すことが、最速かつ最も効果的にゴールに到達するための基本となります。また、この考え方は、業務だけでなく日常生活においても応用できる点が魅力です。 目標はどう決める? 目標を明確に設定したうえで、どの行動を採用するかの選択は、様々なプロジェクトを担当する際に重要なポイントとなります。すぐに行動に移すのではなく、まずはしっかりと戦略を立てることによって、自身の独自性を強化し、より効果的な進行が可能になると考えています。 見える化で分かる? さらに、言葉だけで説明するのではなく、ホワイトボードやノートなどを利用して全体像を見える化することで、個人やチーム全体で理解を深めることができます。そこから、具体的に誰がどのタイミングでどのような役割を果たすのかを話し合いながら進めると、プロジェクトを円滑に推進することができるでしょう。

マーケティング入門

体験価値再発見の学び旅

体験価値向上の秘訣は? 顧客が自ら利用する商品やサービスの体験価値をいかに向上させるかというテーマは、個人的に非常に面白く、印象深かったです。当初は、マーケティング側の経験や知識、国籍、文化など幅広い要素が関係するため、複雑な事例も存在するのではと一瞬考えました。しかし、実際には、機能面と情緒面の両方から対象のターゲット層にどれだけ見事に訴求できるかがポイントとなり、セグメンテーション、ターゲティング、ポジショニングの前提条件をしっかり創造すれば、その後の解決策をブレークダウンすることで答えが導かれるという点に納得しました。 基本に立ち返るべき? また、日常業務では「体験価値」という言葉をよく使用していますが、本講習の内容と照らし合わせると、捉え方の精度が十分でないのではないかと心配に感じました。どうやら、マーケッターとしての視点よりも、売り込み寄りになってしまっている印象があります。自分自身を含め、組織全体で基本に立ち返り、行動の中身をアップデートしていきたいと感じています。

戦略思考入門

可能性を活かすための戦略的思考

物事を捨てる選択は正しいか? 戦略的に物事を捨てることの重要性を再認識しました。業務において「捨てる」という選択は、可能性を手放すことと同義になる場合もあります。しかし、実践演習で経験したように、ROIなどの定量的指標を用いて優先順位をつけることが重要だと感じました。 顧客の優先順位をどう付ける? 実践演習で学んだ内容を活かして、顧客の優先順位付けを行い、どの顧客を優先的に訪問することで営業利益を最大化できるかを考えたいと思います。これまでは、過去の売上や顧客の規模で大まかに仕分けをしていましたが、今後は他の数値を参考にしながら、ROIを高めるために組織運営を進めていきたいと考えています。 データ分析で得られるものは? 数値分析を進めるにあたり、社内でどのようなデータが利用可能か、またどのように計算できるかを一次情報に基づいて分析したいと思います。さらに、現在行っている業務やサービスを洗い出し、無駄や不要なものが残っていないかをゼロベースで再検討していきたいと考えています。

デザイン思考入門

予期せぬ挑戦で深まる学び

経営層とのズレは? 総務の分野では、明確なゴールや課題意識が設定された状態で業務が依頼されることが多く、経営層と現場の考え方のズレを常に意識しながら問題解決に取り組む重要性を感じました。経営側が示すのは課題定義までであるため、実際に試作品を作る過程で予期せぬ問題が発生することを体験し、学びが深まりました。 AIデザインはどう? 生成AIを活用してデザインを作成する試みは、予想以上に難しいと感じました。自分のイメージを正確に反映させるためには、プロンプトの使い方をさらに工夫していく必要があると感じています。また、思いもよらない結果が得られることもあり、試行回数を意識することが大切だと思いました。 試作の修正ポイントは? 加えて、生成AIの利用はもっと意識的な操作が求められる点、試作後に自ら修正箇所を見出す経験が得られる点、そしてデザイン思考入門で学んだ手法が、自分の予想を超える、または改善された成果を生み出す可能性があることを実感しました。

データ・アナリティクス入門

仮説思考で切り拓く成長への道

仮説検証はどう進む? 問題解決に取り組むためには、複数の仮説を立て、それぞれを短いスパンで検証することが大切です。仮説設定の際には、3Cや4Pといったフレームワークを活用することで、より多角的かつ論理的にアプローチできると感じました。 固執をどう克服する? 私自身の業務では、課題に直面すると日々の経験に左右され、一つの可能性に固執してしまう傾向がありました。仮説はあくまで出発点であるため、複数の視点から検討する姿勢が重要だと学びました。今後は、対策を立案する前に一度立ち止まり、慎重に仮説を設定することで、論理の偏りや抜けを防ぎ、より精度の高い対策に結びつけたいと思います。 書き出す仮説の意義は? また、分析の材料となるデータ収集に先立ち、まずは課題に対する仮説を書き出すことが基本であると感じました。3Pや4Cのフレームワークを利用し、俯瞰的に課題を捉えることで、決めつけに陥らずに検証・結果のプロセスを慎重に実行する姿勢が大切だと再認識しました。

データ・アナリティクス入門

幾何平均で拓く新視点の統計術

平均と標準偏差の意味は? これまで平均値と標準偏差をなんとなく使用していましたが、今回の学びを通じて、それぞれの利用目的や強みが明確になりました。特に、幾何平均については、これまで計算式が難しいという理由からあまり触れてこなかったものの、その特徴を理解できたことで、必要に応じて積極的に活用していきたいと感じています。また、標準偏差についても、グラフで見るイメージだけでなく、具体的な数値として求められることを知り、大変驚きました。 業務に活かす意図は? 業務では、マーケティング部門として販売実績の分析や経営層への成長率報告のデータ分析に役立てることができると実感しています。具体的には、各社の売上高を中央値や標準偏差で分析したり、販売実績の成長率に対して幾何平均を用いるなど、状況に応じた情報提示ができるように活用していきたいと考えています。 幾何平均の応用点は? また、幾何平均が適用できる場面について、さらに意見交換を行いたいと思います。

データ・アナリティクス入門

比較が照らす学びの軌跡

比較の意義は何? 「分析とは比較である」という考え方を実践することができました。その他のデータと比較しながらその意味合いを考察することが、分析の基本であると再認識しました。具体的には、数字による集約、視覚的に捉える方法、そして数式で関連性を見るといった3点について学びました。数字の集約では、平均値のみならず、データの散らばりを示す標準偏差の役割も重要だと理解しました。また、データの中心を考える際には、単純平均、加重平均、幾何平均、中央値といった複数の指標があることを確認できました。 実務への応用は? ヒストグラムの作業では、実際に手を動かすことでその理解が深まり、自身の業務において作業プロセスのミスの発生度合いなどを視覚化する際に活用できると感じました。また、気象庁の温度データを用いた演習を通じて、公開情報からデータをダウンロードして利用する方法を再認識しました。今後は、こうしたデータ活用の手法を実務に積極的に取り入れていきたいと思います。

データ・アナリティクス入門

重みを知れば仕事が変わる

各平均値はどう選ぶ? 加重平均は以前から活用していましたが、その際は重み付けの解釈に重点を置いていました。改めて考えると、単純平均、加重平均、幾何平均、中央値といった各種の平均値は目的に応じて使い分けるべきですが、実際の業務では加重平均に偏りがちです。また、見える化の手法としても円グラフやヒストグラムが多用され、ばらつきは主に標準偏差の数値で把握しています。 業務量の重みをどう見る? 業務量の重み付けについては、データから抽出することで一層理解が深まり、数値化により説得力のある説明へとつながると感じています。今後も業務要件を数値から読み解く手法を積極的に採用していきたいです。 数値が語る本質は? さらに、業務量のヒアリング調査結果やシステム利用率など、数値のインパクトは重要な判断材料となります。これらを自分の業務タスクに組み込み、インプットデータのマネジメントを計画の初期段階から取り入れていくことが今後の課題だと考えています。

戦略思考入門

フレームワークで広がる戦略の扉

戦略の整合性とは? 戦略を考える際には、常に高い視座を保ち、整合性と一貫性に注意を払うことが大切だと感じました。また、検討の抜け漏れを防ぎ、効率的に考えを整理するためのフレームワークの重要性を再認識する機会となりました。 フレームワークの違いは? 具体的には、3C、PEST、SWOT、バリューチェーンといった各フレームワークが互いに関連し合いながら、異なる視点を提供してくれる点に大変学びがありました。これらの考え方を活かして、実際の業務でも新製品の価格設定の検討や提案に取り入れていきたいと思います。 実践でどう活かす? また、フレームワークの考えは実践を重ねることで自分のものにできると感じたため、業務で活用できるものはないか常に意識し、積極的に実践していく所存です。さらに、各フレームワークで利用できる多様な情報が、戦略を考える際の貴重な資料となることを理解し、その視点から情報収集にも努めていきたいと考えています。

データ・アナリティクス入門

実務に効く!仮説検証で問題解決

プロセスは何が鍵? このたびの学びでは、課題解決のプロセス「what→where→why→how」を通じて、特に原因分析(why)と打ち手の策定(how)の部分に焦点をあてることができました。各段階での具体的な方法が、実際のビジネスシーンにどう結びつくのかを理解できたのが印象的です。 原因はどう掘り下げる? 原因特定の手法として、プロセスを分解することで問題の要因を明確にし、深堀りするアプローチについて学びました。また、A/Bテストを用いる手法では、データの偏りを避けながら分析を行える点が、実務での効果的な検証手法として魅力的に映りました。 仮説はどう立てる? この経験をもとに、今後は仮説を立て、検証を行い、解決策を素早く導き出すサイクルを意識して業務に活かしていきたいと思います。 A/Bテストの知見は? なお、A/Bテストは現場で実際にどの程度利用されているのか、引き続き知見を深めていきたいと感じています。
AIコーチング導線バナー

「業務 × 利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right