データ・アナリティクス入門

比較が照らす学びの軌跡

比較の意義は何? 「分析とは比較である」という考え方を実践することができました。その他のデータと比較しながらその意味合いを考察することが、分析の基本であると再認識しました。具体的には、数字による集約、視覚的に捉える方法、そして数式で関連性を見るといった3点について学びました。数字の集約では、平均値のみならず、データの散らばりを示す標準偏差の役割も重要だと理解しました。また、データの中心を考える際には、単純平均、加重平均、幾何平均、中央値といった複数の指標があることを確認できました。 実務への応用は? ヒストグラムの作業では、実際に手を動かすことでその理解が深まり、自身の業務において作業プロセスのミスの発生度合いなどを視覚化する際に活用できると感じました。また、気象庁の温度データを用いた演習を通じて、公開情報からデータをダウンロードして利用する方法を再認識しました。今後は、こうしたデータ活用の手法を実務に積極的に取り入れていきたいと思います。

データ・アナリティクス入門

重みを知れば仕事が変わる

各平均値はどう選ぶ? 加重平均は以前から活用していましたが、その際は重み付けの解釈に重点を置いていました。改めて考えると、単純平均、加重平均、幾何平均、中央値といった各種の平均値は目的に応じて使い分けるべきですが、実際の業務では加重平均に偏りがちです。また、見える化の手法としても円グラフやヒストグラムが多用され、ばらつきは主に標準偏差の数値で把握しています。 業務量の重みをどう見る? 業務量の重み付けについては、データから抽出することで一層理解が深まり、数値化により説得力のある説明へとつながると感じています。今後も業務要件を数値から読み解く手法を積極的に採用していきたいです。 数値が語る本質は? さらに、業務量のヒアリング調査結果やシステム利用率など、数値のインパクトは重要な判断材料となります。これらを自分の業務タスクに組み込み、インプットデータのマネジメントを計画の初期段階から取り入れていくことが今後の課題だと考えています。

戦略思考入門

フレームワークで広がる戦略の扉

戦略の整合性とは? 戦略を考える際には、常に高い視座を保ち、整合性と一貫性に注意を払うことが大切だと感じました。また、検討の抜け漏れを防ぎ、効率的に考えを整理するためのフレームワークの重要性を再認識する機会となりました。 フレームワークの違いは? 具体的には、3C、PEST、SWOT、バリューチェーンといった各フレームワークが互いに関連し合いながら、異なる視点を提供してくれる点に大変学びがありました。これらの考え方を活かして、実際の業務でも新製品の価格設定の検討や提案に取り入れていきたいと思います。 実践でどう活かす? また、フレームワークの考えは実践を重ねることで自分のものにできると感じたため、業務で活用できるものはないか常に意識し、積極的に実践していく所存です。さらに、各フレームワークで利用できる多様な情報が、戦略を考える際の貴重な資料となることを理解し、その視点から情報収集にも努めていきたいと考えています。

データ・アナリティクス入門

ABテストで広がる検討の可能性

ABテストの活用法は? 原因を探るツールとしてご紹介いただいたABテストについて、既に知識はあったものの、問題解決プロセスにおける位置づけと合わせて理解できたことで、具体的な利用シーンがイメージしやすくなりました。体系的に整理することは、自身で活用する際や他者に説明する際にも有効だと感じています。 業務検討テンプレートは? 業務に取り入れるためには、具体的な状況を想定し、各パターンごとに検討方法のテンプレートを構築しておく必要があると実感しました。こうしたテンプレートを整備することで、検討に着手するスピードが速まり、業務の効率化にもつながると考えています。 どの要素が影響する? たとえば、よくあるデータ分析の依頼を想定し、受注額に影響を与える要素を洗い出して、その関連性を検証するパターンをいくつか作成しようと思います。これにより、関係性の強い要素から受注額を予測する、といった検討がよりスムーズに進むと期待しています。

データ・アナリティクス入門

仮説思考で変わるサポートの未来

仮説思考は何が変わる? 仮説思考を学ぶことで、業務に対する課題意識がより明確になったと感じました。単に仕事をこなすのではなく、仮説をもとにトライアンドエラーを重ねることで、目的に一歩ずつ近づけるという実感が得られました。 サポート満足の理由は? 現在の課題として、クライアントのサポートに対する満足度が低い原因は、製品の不具合ではなく、返信までに要するリアクション時間やサポートサイトの分かりにくさにあるとの仮説を立てました。この課題に対して、改善策を検討し実施していく決意です。 フィードバック改善案は? また、クライアントからのサポートフィードバックを年に一度にとどめず、より頻繁に意見をいただけるようにすることで、現状の把握と対応の質を向上させたいと考えています。問い合わせが多い項目については、サポートサイトを見直しアップデートするほか、検索しやすいキーワードの設定も改め、利用しやすい環境の整備を目指します。

クリティカルシンキング入門

相手を惹きつける文章の秘密

文章作成で意識するポイントは? 文章を書く際は、相手を意識して主語、述語、修飾語、句読点の位置などを丁寧に考慮することの大切さを学びました。実務の現場では、利用者の様子を報告書にまとめ、ケアマネジャーや医師に情報を伝える業務があります。多くの場合、主語は利用者となりますが、状況に応じてご家族やリハビリを担当するセラピストなどが主語になる場合もあり、どのような行動や変化が起こっているのかを明確にすることが求められます。 報告書はどのように伝える? 具体的には、ケアマネジャーに対しては、利用者の生活状況や動作の様子が伝わるように報告書を作成します。専門用語についても省略せず、日本語で丁寧に表現し、必要に応じて用語の説明を加えることで理解しやすい文章を心がけています。一方、医師向けの報告では、生活状況に加えて血圧や脈拍などのバイタルサイン、病状の変化をできる限り数値化して具体的に伝える必要があると考えています。

クリティカルシンキング入門

整理で広がる思考の扉

ロジックツリーの効果は? 自身や他者が持つ思考のクセや偏りを踏まえ、ロジックツリーを活用することで、偏りの影響を受けずに考える訓練ができるという点が印象に残りました。思考のトレーニングを継続することで、より客観的に考える力を養いたいと考えています。 取引先対応のポイントは? また、取引先との取り組みを整理し、どこから手を付けるかを明確にするためにもロジックツリーの利用が役立つと感じています。情報を整理し全体を俯瞰することで、抜け漏れや偏りを防ぎながら業務を進めることができると考えています。 実行計画のコツは? 具体的な進め方は、まず取り組み内容をリスト化して重要なポイントを確認し、ロジックツリーを作成してテーマごとに情報やその関係性を可視化します。その後、重要度や影響度に応じて優先順位を決め、計画を実行しながら進捗をチェックし、必要に応じて柔軟に調整していくという手順です。

クリティカルシンキング入門

データ分析で未来を変える!

学びの意義は? 私の学びについてお伝えします。 数値の発見は何故? 数値データの詳細な分析は重要だと感じました。データの分類手法により異なる結果が得られることを理解しました。また、全体を定義し、仮説を立てることの必要性も痛感しました。具体的には、フレームワークとしてMECEを利用することです。 医療解析の視点は? 医療技術関連に関しては、まず数値化可能なデータを取得し、求めたい結果を明確にしてデータ全体を定義しました。その後、仮説を立て、MECEを活用して分析を進めました。関連性がありそうな分野として、曜日別の忙しさや業務分析にこの手法が使えそうなので試す予定です。 未来の計画はどう? 来週には、自分に関連する業務について計画を立て、その後、今回学んだ手法を活用して曜日別・年齢別の業務分析を行います。その分析結果を振り返り、上司や他の受講生とも共有したいと思っています。

デザイン思考入門

試しながら感じた生成AIの可能性

業務活用はどう進む? 生成AIを業務に活用する動きが進む中、まずは自分の業務で試してみることが大切だと感じています。たとえば、直近ではOpenAIの新しいモデルに関して、ハルシネーション率が高いとされるため、o4-miniを使ってその数値を表にまとめる取り組みを行いました。 混在は何故起こる? しかし、OpenAIのモデルであるにもかかわらず、GPT-4o-miniとo4-miniが混在した表が作成され、そのままでは利用できない結果となりました。ベンチマークでは高いスコアが出ているものの、正確性の面では改善の余地があると実感しました。 試行の価値は? また、生成AIは手軽に試すことができるため、積極的に利用する価値があると感じています。さらに、AIエージェントやGraph RAGといった技術も提案されており、これらを自分自身で実践することが重要だと改めて認識しました。

データ・アナリティクス入門

標準偏差で見えるデータの魔法

標準偏差ってどう理解? バラツキを示す標準偏差について、普段利用する機会が少ないためか、初めて触れる際にはとっつきにくい印象を持ちました。学校での成績に用いられる偏差値とは異なるものなので、具体的な事例に基づいて何度も実際に使ってみることが重要だと感じます。 代表値とバラツキの違いは? 一方、単純平均、加重平均、中央値といった代表値は、日常的に利用しているため理解に苦労することはありません。しかし、バラツキに関してはこれまであまり注目してこなかったため、データの特徴把握のためにも積極的にビジュアル化し、標準偏差を意識して利用したいと思います。 どう実践に活かす? 今回学んだ内容を実践に取り入れる際、代表値だけでなく、標準偏差がどのような場面で効果的に使えるのかを具体的に考えながら業務に活かしていきたいです。

データ・アナリティクス入門

数値と成長が紡ぐ学びの物語

代表値の使い分けは? 今回は、実際に数字に集約して捉えるという観点から、代表値と標準偏差について学びました。代表値には、単純平均、加重平均、幾何平均、中央値が存在し、それぞれの違いを意識しながら適切に使用することの大切さを再確認できました。 数値の視覚化は? 業務上は、主に標準偏差をグラフ上で確認する形で活用しています。ただし、数値として厳密に扱っているわけではなく、視覚的なデータとして捉えています。また、幾何平均については、Excel関数を利用して計算することが多いです。 成長率評価はどう? 一方で、個人の成長率を評価する際に、回答年や回答抜け年、最初と最終の回答年がバラバラなため、アナログな方法で関数を適用している現状があります。より効果的な方法があれば、ぜひ知りたいと思っています。

データ・アナリティクス入門

納得!平均の使いこなし術

加重平均と幾何平均はどんな違い? 加重平均と幾何平均の考え方は非常に興味深く、説明を聞いて納得できました。ただし、実際にどちらを使い分けるかの判断基準はまだ掴みきれておらず、特にルートが絡む部分には少し抵抗を感じています。今後は使いこなせるように、知識を深めていきたいと考えています。 部門間売上分析は? 部門間での売上分析においては、加重平均が有効だと感じています。現在業務で部門別の売上分析を行っているため、今後は加重平均を積極的に取り入れていく予定です。また、幾何平均についても自己学習を進め、どのように業務に活かせるかを検討していきたいと思います. 適用例はどうすべき? グループ内でも幾何平均の適用例や利用場面について話し合い、理解を深める機会を持ちたいと考えています。

「業務 × 利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right