データ・アナリティクス入門

仮説が導く学びの扉

仮説の役割って何? 「仮説」を立てる重要性を再認識しました。特に、3C(顧客・競合・自社)や4P(製品・価格・場所・プロモーション)といったフレームワークは、網羅的な仮説形成に有効であると実感しています。これまではあまり意識せずに活用してこなかったため、今後は欠かさず取り入れていこうと考えています。 従来方法の問題点はどう? 従来は、実績ベースで特徴や傾向を把握し、その後に仮説を立てる方法で業務を進めていました。しかし、その方法だと仮説が固定的になり、複数のパターンを検討できなかったり、現状にないデータへの仮説が立てられなかったりするというデメリットを改めて感じました。 新たな仮説の進め方は? そこで、今後はデータを見る前に課題に対して仮説を書き出すことから始めます。その際、3Pや4Cといったフレームワークを利用し、生成AIなども活用して個人のバイアスを抑えるよう努めます。検証段階では「WHERE」「WHY」「HOW」といった観点から複数パターンの仮説を立て、それらをデータとして記録し、「仮説→検証→結果」というプロセスを確実に回していきたいと思います。

クリティカルシンキング入門

分析で見つける学びの宝

目的の重要性は? 分析を行う際は、常に「目的」を見失わないことが大切です。複数の切り口で分析できると、どんどん試すうちにそのプロセス自体が目的化し、結果として意味のない結論に至ったり、時間を無駄にする可能性があります。傾向が明確にならない場合でも、それを単なる失敗と捉えるのではなく、最初にどのような分析が効果的かを意識することが必要です。特に、早い段階で有効な分析方法に目星をつけることが重要だと感じます。また、無意識のうちに活用しているとはいえ、MECEのフレームワークを意識的に利用することで、分析の精度を高められる点に気づきました。 数値評価で考える? マネジメント業務では、進捗状況の分析や不具合(品質)の分析といった、数字に基づく評価が頻繁に求められます。しかし、テンプレートに頼ったり、漠然と分類しているだけでは、目的に即した十分な分析が実現できない場合があります。現状を正確に分析できれば、将来の予測精度が向上し、その予測に基づいた対策を検討することが可能になります。分析にとどまらず、より精度の高い予測に結びつける取り組みを進めていきたいと考えています。

データ・アナリティクス入門

データ分析で業務改革を目指す学び

データ分析で重要なのは? 現在、実務の初歩的なデータ分析に触れる機会はあるものの、改めて分析手法を体系的に理解することができました。特に、データ分析においては課題設定と仮説が極めて重要です。ただ単に分析手法の知識を持つだけでなく、領域知識も必要となるため、日常業務では特に業務理解を深めることを意識していきたいと思います。 業務改革で何が求められる? 業務改革の根拠としてデータ分析を利用することが多いですが、第1週の学習を通じて、私が現在取り組んでいるのは、分析というよりもむしろ集計や可視化に近いことを理解しました。したがって、まず課題の設定や仮説に基づいてどのようなデータで比較するかを慎重に検討し、情報を収集することから始めるべきだと考えています。 領域知識を高めるには? また、課題設定や仮説を立てるための領域知識が不足しています。そこで、領域知識の向上を目指しながらも、分析を進めるためには周囲の協力を仰ぐことも重要だと感じています。データが複数のシステムにまたがって保存されているため、一度どのようなデータが存在するのかを整理することが重要です。

戦略思考入門

ナノ単科で実感する経済の秘密

規模経済を探るのは? 本講座を通じて、まず「規模の経済性」について学びました。固定費と変動費の分析を正確に行わないと不経済に陥る可能性があるため、コスト構造の把握が非常に重要であると実感しました。 習熟進展はどう考える? 次に「習熟効果」に関して、累積的な生産性の向上がコスト削減に寄与する一方、経験や知見が一定の段階に達すると効果が薄れる可能性があるという点を学び、業務改善のタイミングを見極める大切さを感じました。 範囲効果は何か? また「範囲の経済性」では、既存の資源を他の事業にも活用することで、個別に行う場合よりも効率的にコストを削減できることに気づかされました。技術投資のシナジーを活かし、新規事業の検討につなげる視点が印象に残りました。 ネット未来はどう? 最後に、「ネットワークの経済性」については、参加者が増加するほど利便性が向上し、実際のフィードバックが大きな効果を生む仕組みがあることを学びました。現状、SNSなどの活用が十分でないため、今後の展開に向けてネットワーク利用の検討が必要だと感じました。

マーケティング入門

新しい顧客体験の提案に挑戦してみた結果

新たな体験価値で顧客獲得? 商品とともに新たな「体験価値」を加えることで、顧客へのアプローチ方法が大きく変わると感じました。例えば、カフェでコーヒーの焙煎体験や美味しいコーヒーの淹れ方のワークショップを開くことで、新たな顧客層にアピールできます。また、商品購入時に生産者の名前や農場の知識を提供することで、南米やアフリカなどの労働環境や環境問題への関心を引き出す取り組みも可能です。 地域の関心を集める方法は? 現在の業務に直接適用するのは難しいものの、企業活動に地域の人々の関心を集める方法は見出せると思います。例えば、定期的な季節イベントに参加してもらうことなど、様々なPR方法を利用して企業の新たなブランディングに貢献できるのではないかと考えます。 体験型サービスの需要増加? また、身近な商品や喫茶店で同様の体験価値を提供している事例がないか、探してみる価値があると思います。インバウンド増加に伴う「体験型サービス」の需要は今後高まると予想されるため、機会があればどのようなサービスがあるのか個人的にリサーチしてみたいです。

戦略思考入門

経済性のカラクリに迫る学び

経済効果、どこが効く? 規模の経済性(スケールメリット)は、生産規模を大きくすることで単位当たりのコストを下げる点に注目します。習熟効果は、繰り返しの生産を通じて技術が向上し、結果として生産コストが削減される効果を示しています。また、範囲の経済は、異なる商品を同じ設備で生産することで運用効率を高め、コスト圧縮が可能になる仕組みです。さらに、ネットワークの経済は、利用者が増えるにつれ各利用者にとっての利便性やサービスの価値が向上するという特徴があります。 理論と現実はどう違う? しかし、これらの経済性の概念は、すべての場合に当てはまるわけではなく、効果が期待通りに現れない場合もあります。そのため、各々のメカニズムや働き方を正しく理解することが重要です。 判断基準は本質派? 私自身、業務における経済性の傾向を掴み、状況に応じてどの概念が最も効果的に働くかを見極めることが必要だと感じています。単に直感で判断するのではなく、本質を追求し、具体的なメカニズムに照らし合わせながら意思決定を行う習慣を身につけたいと思います。

データ・アナリティクス入門

数字で読み解く現場改善の秘訣

データ分析はどう理解? データ分析の手法について学び、既存のメソッドを活用することでデータ内に潜む意味を解析できることを理解しました。ただし、MECEの設定基準やその手法についてはまだ不明な点があるため、今後は確認を重ね、分析力の向上に努めたいと考えています。 現状のITは十分? また、職場で業務改善を担当する中で、現在の環境では活用可能なITリソースが十分に利用されていないという認識に至りました。単に使い方や技術的な問題だけでなく、業務の種類、内容、工数、手順などが十分に把握されないままツールが導入されている可能性を感じたため、まずは自身の置かれている環境の理解を改めて確認する必要があると実感しました。 業務改善の手法は? 今後は、職場内の業務項目、分類、関連する法令、関わるステークホルダー、工数、作業手順をリストアップし、最適なツールの選定や作業方法の見直しにつなげていく予定です。具体的には、現在使用している掲示板の改善に向けて、上記の内容を全員に再認識してもらうための作業と、その手順書の作成を進める考えです。

データ・アナリティクス入門

実務で使える統計の知恵

代表値をどう捉える? 代表値として頭に浮かんだのは平均値と中央値でしたが、実社会では加重平均などさまざまな平均値が活用されている点にあらためて気づき、体系的に学ぶ重要性を感じました。また、標準偏差がばらつきを示すという理解はあったものの、計算方法や2SDルールについては改めて理解を深めることができました。 要因分析をどう活かす? 障害分析の要因分析においては、単に平均値だけを利用するのではなく、取得できる数値情報それぞれの意味を理解した上で、加重平均や幾何平均など適切な手法を用いる必要があると感じました。一方で、分散については現在の業務で具体的にどの局面で利用できるかはまだ明確ではありませんが、基本的な考え方として頭の片隅に置いておくべきだと感じました。 今数値はどう使う? まずは、現在扱っているさまざまな数値を見直し、現状の利用方法が適切かどうかを確認する必要があると考えました。また、まだ導入できていない分散についても、新たに算出することで別の視点が得られる可能性があるため、再度検証する必要があると感じています。

クリティカルシンキング入門

データ分析の深さに触れる喜び

データ分析の楽しさとは? データの分析や加工を実際に自分で行えたことが非常に楽しかったです。Excelを使って学び直す経験も新鮮でした。データを複数の側面から切り分けることは久しぶりの学びでもありましたが、時間が限られているときにそれを実践するのは少し難しいと感じました。 数値を分解する面白さとは? 数値を扱う重要性や面白さを日常業務で感じることは年に数回ありますが、数値を分解していくと、表面では見えてこなかった関連性や有意差が明らかになるため、とても興味深いです。さまざまな切り口で分析することもありますが、アイデアが浮かぶときと浮かばないときがあるように感じます。 グラフ活用の重要性は? さらに、統計解析ソフトなどを利用すると、より面白い分析ができると思います。また、多様なグラフを作成することで、説得力のある説明が可能となると感じます。わかりやすく説明するためには、表よりもグラフの活用が重要だと思います。このような多様なグラフや可視化に関する技術も、データ分析とはまた異なる視点で学んでいくべきことだと思います。

戦略思考入門

俯瞰力を鍛え、戦略的思考を手に入れる

俯瞰する力を磨くために 常に俯瞰して物事をとらえる必要があると感じました。キャッチフレーズ、多角化、アプリ導入などの事例を通じて、当事者になると目の前の事象や自身の経験に基づいて判断しがちですが、一歩引いてフレームワークを利用し、しっかりと分析・検討することの重要性を学びました。 気合だけでは足りない? 日々の業務では、営業目標達成のための戦略立案において、現状・市場・社内の分析をしっかりと行い、全体を把握した上で戦略を立てていくことが必要です。どうしても気合論に陥りがちですが、具体的にするために外部分析や個人の分析を行います。 未来を見据えて情報収集 日々、全体をつかむための情報入手に注力したいと考えています。様々なリソースを駆使して行動し、国内外の動きに敏感になり、今後市場がどのように変化するかを常に意識して行動することが重要です。また、部のメンバーにもそのような視点を持ってもらえるような仕組みを考え、取り入れていきます。まずは危機感の醸成を試みます。

戦略思考入門

フレームワークで未来を切り拓く

フレームワークの効果は? 学習期間中に習ったフレームワークを意識的に活用することで、設問の意図に気づきやすくなりました。実際、順序立てたフレームワークを用いることで、業務上の戦略が明確な理由に基づいていないことが多い現実に対し、合理的な説明材料を集めて説得に利用できると感じています。 チーム整理はどう? また、時間に余裕がある案件に対しては、大局的な視点から整理する習慣を日常業務で意識するよう努めています。自チームのみならず、関連する部署全体を含めた整理を行うことで、より適切な対応や戦略が立てられると実感しました。 未来計画の鍵は? さらに、次の会計年度の業務プランや方針を検討する際には、PEST分析などの大局的なフレームワークを活用して、効率的に整理し方針決定に役立てたいと考えています。特にTechnology分野では、生成AIの進化と社会への浸透がもたらす既存業務の移行リスクが大きな課題となっており、このリスクを機会として捉え、どのような戦略や対策が最適かを探求することに意義を感じています。

デザイン思考入門

ユーザー目線で築くデザイン思考の歩み

人間中心設計はどう? デザイン思考の中心にある人間中心設計の考え方が特に印象に残りました。プロダクトの利用者は当然ユーザーであるべきですが、実際にはその視点が薄れることもあると感じました。徹底的にユーザー目線に立つという意識がデザイン思考の出発点であると改めて認識し、今後の学習においてもこの点を大切にしていきたいと思います。 市民ニーズは伝わる? 行政運営に携わる中で、市民のニーズを重視することは当たり前ですが、現実には十分に実現できていない部分もあります。業務の棚卸しや政策立案において、デザイン思考は非常に有効だと感じています。机上の理論だけの施策ではなく、協働のプロセスを重ねることで、本当に求められる施策形成へと結びつけたいと考えています。 対話で何が変わる? また、住民や事業者、そして職員同士の対話がすべての基盤であると思います。対話をしっかり行えば、自然とその後のプロセスもうまく進むでしょう。まずは、誰もが忌憚なく意見を交わせる、敷居の低い対話の場づくりに注力していきたいです。
AIコーチング導線バナー

「業務 × 利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right