データ・アナリティクス入門

ABテストで広がる検討の可能性

ABテストの活用法は? 原因を探るツールとしてご紹介いただいたABテストについて、既に知識はあったものの、問題解決プロセスにおける位置づけと合わせて理解できたことで、具体的な利用シーンがイメージしやすくなりました。体系的に整理することは、自身で活用する際や他者に説明する際にも有効だと感じています。 業務検討テンプレートは? 業務に取り入れるためには、具体的な状況を想定し、各パターンごとに検討方法のテンプレートを構築しておく必要があると実感しました。こうしたテンプレートを整備することで、検討に着手するスピードが速まり、業務の効率化にもつながると考えています。 どの要素が影響する? たとえば、よくあるデータ分析の依頼を想定し、受注額に影響を与える要素を洗い出して、その関連性を検証するパターンをいくつか作成しようと思います。これにより、関係性の強い要素から受注額を予測する、といった検討がよりスムーズに進むと期待しています。

データ・アナリティクス入門

仮説思考で変わるサポートの未来

仮説思考は何が変わる? 仮説思考を学ぶことで、業務に対する課題意識がより明確になったと感じました。単に仕事をこなすのではなく、仮説をもとにトライアンドエラーを重ねることで、目的に一歩ずつ近づけるという実感が得られました。 サポート満足の理由は? 現在の課題として、クライアントのサポートに対する満足度が低い原因は、製品の不具合ではなく、返信までに要するリアクション時間やサポートサイトの分かりにくさにあるとの仮説を立てました。この課題に対して、改善策を検討し実施していく決意です。 フィードバック改善案は? また、クライアントからのサポートフィードバックを年に一度にとどめず、より頻繁に意見をいただけるようにすることで、現状の把握と対応の質を向上させたいと考えています。問い合わせが多い項目については、サポートサイトを見直しアップデートするほか、検索しやすいキーワードの設定も改め、利用しやすい環境の整備を目指します。

クリティカルシンキング入門

相手を惹きつける文章の秘密

文章作成で意識するポイントは? 文章を書く際は、相手を意識して主語、述語、修飾語、句読点の位置などを丁寧に考慮することの大切さを学びました。実務の現場では、利用者の様子を報告書にまとめ、ケアマネジャーや医師に情報を伝える業務があります。多くの場合、主語は利用者となりますが、状況に応じてご家族やリハビリを担当するセラピストなどが主語になる場合もあり、どのような行動や変化が起こっているのかを明確にすることが求められます。 報告書はどのように伝える? 具体的には、ケアマネジャーに対しては、利用者の生活状況や動作の様子が伝わるように報告書を作成します。専門用語についても省略せず、日本語で丁寧に表現し、必要に応じて用語の説明を加えることで理解しやすい文章を心がけています。一方、医師向けの報告では、生活状況に加えて血圧や脈拍などのバイタルサイン、病状の変化をできる限り数値化して具体的に伝える必要があると考えています。

クリティカルシンキング入門

整理で広がる思考の扉

ロジックツリーの効果は? 自身や他者が持つ思考のクセや偏りを踏まえ、ロジックツリーを活用することで、偏りの影響を受けずに考える訓練ができるという点が印象に残りました。思考のトレーニングを継続することで、より客観的に考える力を養いたいと考えています。 取引先対応のポイントは? また、取引先との取り組みを整理し、どこから手を付けるかを明確にするためにもロジックツリーの利用が役立つと感じています。情報を整理し全体を俯瞰することで、抜け漏れや偏りを防ぎながら業務を進めることができると考えています。 実行計画のコツは? 具体的な進め方は、まず取り組み内容をリスト化して重要なポイントを確認し、ロジックツリーを作成してテーマごとに情報やその関係性を可視化します。その後、重要度や影響度に応じて優先順位を決め、計画を実行しながら進捗をチェックし、必要に応じて柔軟に調整していくという手順です。

クリティカルシンキング入門

データ分析で未来を変える!

学びの意義は? 私の学びについてお伝えします。 数値の発見は何故? 数値データの詳細な分析は重要だと感じました。データの分類手法により異なる結果が得られることを理解しました。また、全体を定義し、仮説を立てることの必要性も痛感しました。具体的には、フレームワークとしてMECEを利用することです。 医療解析の視点は? 医療技術関連に関しては、まず数値化可能なデータを取得し、求めたい結果を明確にしてデータ全体を定義しました。その後、仮説を立て、MECEを活用して分析を進めました。関連性がありそうな分野として、曜日別の忙しさや業務分析にこの手法が使えそうなので試す予定です。 未来の計画はどう? 来週には、自分に関連する業務について計画を立て、その後、今回学んだ手法を活用して曜日別・年齢別の業務分析を行います。その分析結果を振り返り、上司や他の受講生とも共有したいと思っています。

デザイン思考入門

試しながら感じた生成AIの可能性

業務活用はどう進む? 生成AIを業務に活用する動きが進む中、まずは自分の業務で試してみることが大切だと感じています。たとえば、直近ではOpenAIの新しいモデルに関して、ハルシネーション率が高いとされるため、o4-miniを使ってその数値を表にまとめる取り組みを行いました。 混在は何故起こる? しかし、OpenAIのモデルであるにもかかわらず、GPT-4o-miniとo4-miniが混在した表が作成され、そのままでは利用できない結果となりました。ベンチマークでは高いスコアが出ているものの、正確性の面では改善の余地があると実感しました。 試行の価値は? また、生成AIは手軽に試すことができるため、積極的に利用する価値があると感じています。さらに、AIエージェントやGraph RAGといった技術も提案されており、これらを自分自身で実践することが重要だと改めて認識しました。

データ・アナリティクス入門

標準偏差で見えるデータの魔法

標準偏差ってどう理解? バラツキを示す標準偏差について、普段利用する機会が少ないためか、初めて触れる際にはとっつきにくい印象を持ちました。学校での成績に用いられる偏差値とは異なるものなので、具体的な事例に基づいて何度も実際に使ってみることが重要だと感じます。 代表値とバラツキの違いは? 一方、単純平均、加重平均、中央値といった代表値は、日常的に利用しているため理解に苦労することはありません。しかし、バラツキに関してはこれまであまり注目してこなかったため、データの特徴把握のためにも積極的にビジュアル化し、標準偏差を意識して利用したいと思います。 どう実践に活かす? 今回学んだ内容を実践に取り入れる際、代表値だけでなく、標準偏差がどのような場面で効果的に使えるのかを具体的に考えながら業務に活かしていきたいです。

データ・アナリティクス入門

数値と成長が紡ぐ学びの物語

代表値の使い分けは? 今回は、実際に数字に集約して捉えるという観点から、代表値と標準偏差について学びました。代表値には、単純平均、加重平均、幾何平均、中央値が存在し、それぞれの違いを意識しながら適切に使用することの大切さを再確認できました。 数値の視覚化は? 業務上は、主に標準偏差をグラフ上で確認する形で活用しています。ただし、数値として厳密に扱っているわけではなく、視覚的なデータとして捉えています。また、幾何平均については、Excel関数を利用して計算することが多いです。 成長率評価はどう? 一方で、個人の成長率を評価する際に、回答年や回答抜け年、最初と最終の回答年がバラバラなため、アナログな方法で関数を適用している現状があります。より効果的な方法があれば、ぜひ知りたいと思っています。

データ・アナリティクス入門

納得!平均の使いこなし術

加重平均と幾何平均はどんな違い? 加重平均と幾何平均の考え方は非常に興味深く、説明を聞いて納得できました。ただし、実際にどちらを使い分けるかの判断基準はまだ掴みきれておらず、特にルートが絡む部分には少し抵抗を感じています。今後は使いこなせるように、知識を深めていきたいと考えています。 部門間売上分析は? 部門間での売上分析においては、加重平均が有効だと感じています。現在業務で部門別の売上分析を行っているため、今後は加重平均を積極的に取り入れていく予定です。また、幾何平均についても自己学習を進め、どのように業務に活かせるかを検討していきたいと思います. 適用例はどうすべき? グループ内でも幾何平均の適用例や利用場面について話し合い、理解を深める機会を持ちたいと考えています。

クリティカルシンキング入門

表の魔法で伝える新発見

グラフの使い方は大丈夫? 業務での資料作成においては、これまでグラフの利用は補助的な役割と考え、あまり意識して作成していませんでした。しかし、伝えたいメッセージや情報の配置を工夫する上で、シンプルな表であっても読み手が混乱しない仕組みや表現の重要性に気づかされました。 どんな表が伝わる? 今後は、単に表を作るのではなく、その表から伝わるメッセージを大切にしていきたいと考えています。情報量が過度にならず、適切に表現されるよう、特定の分析資料や集計結果などのひな型を作成し、効果的に活用していきたいです。また、どの表現にどのグラフやテクニックを用いるかを、常に読み手の視点に立って工夫することで、より分かりやすい資料作りを目指します。

データ・アナリティクス入門

平均を極めるデータ思考

どの平均値を選ぶ? どのような状況でどの平均値を使うべきかについて学ぶことができ、非常に有益でした。今まではさまざまな種類の平均値を扱ってきましたが、加重平均や幾何平均を利用する理由については深く考えたことがありませんでした。今後は、背景にある意図を意識し、何のため、なぜその平均値を選ぶのかを明確に捉えたいと思います。また、より適切な平均値を選択できるよう努めたいと考えています。 データの見方は? 一方、データ分析においては定性分析の要素が多いことから、平均値を用いる際にはデータの読み解きに十分な注意が必要です。業務に活かすためには、どの視点からデータを捉えるか、そして他の視点が存在しないかを検討することが大切だと感じました。

データ・アナリティクス入門

データを活かす!視覚化テクニック入門

データはどう活かす? データは単にビジュアル化すれば良いわけではなく、用途に応じて適切に使わなければなりません。また、単にグラフに表現された情報だけでなく、その背後や空白の部分からも情報を見つけ出すことができます。さらに、TPOに合わせて代表値の取り方や計算方法が変わりますが、その結果だけで仮説を導き出すことはできません。 難業務の可視化方法は? 現状、私が携わっている業務ではデータを利用したり、数値化・グラフ化する機会があまりないため、自分の業務に適用するのが非常に難しいと感じています。反対に、数値化やグラフ化が難しい業務をどのように工夫して視覚的に示すことができるのか、そうした方法について学びたいと考えています。

「業務 × 利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right