クリティカルシンキング入門

情報を分解して新たな可能性を発見

グラフ化の重要性とは? 分解を行うことで、解像度が向上することを痛感しました。特に、グラフ化の重要性を理解し、視覚的に情報を把握するのは新鮮で面白い体験でした。切り口が見つかると、その観点に注力しやすくなるものの、さらに多様な切り口を考えることも重要です。新たな発見を確定的な答えと見なしすぎず、分解を進めることで結果の変化が生じる可能性も意識するべきだと感じました。手を動かすことで初めて見えないものも浮かび上がり、「見つからなかった」ということ自体も価値のある結果と捉えられる点に気づき、はっとさせられました。 MECEをどう意識する? 分解を行う上で重要なのは、常にMECE(漏れなくダブりなく)を意識することです。これにより、目的に沿った分解を進められます。日常の業務において、分解を実施する際は次のポイントを意識しています。①全体を正しく定義しているか、②分解が目的に沿っているか、③他者からフィードバックを得て、自身の思考の癖を補正することです。 分解の応用例は何か? 具体的には、データが扱われるさまざまな業務に応用が可能です。例えば、備品の在庫管理や発注予測、さらに社内コミュニケーションを活性化するイベントでも有効です。特にアンケート形式でデータを収集する際には、設問設計が非常に重要であり、目的に応じた分析の切り口を試行錯誤しながら模索したいと思っています。 どのように課題を洗い出す? 現状の業務運用における課題を洗い出すためには、データを多様な切り口で分解し、仮説を立てることが欠かせません。特に、MECEを意識し、分析の目的を見失わないようにすることが大切です。備品の在庫管理では、現状データを分解し、傾向を見出すことで在庫の無駄を排除し、適正な発注を図ります。また、社内のコミュニケーションイベントでは、プロセスごとに課題を明確化し、分解した結果に基づいて翌年のアンケート設問設計を見直していく予定です。

戦略思考入門

アイデア深掘りで差別化を実現!

なぜアイデアを深掘り? 差別化を図るためには、容易に思いつくアイデアに満足せず、しつこくアイデアを深掘りして考え続ける姿勢が大切です。また、自分たちの業界だけでなく他業種の成功例や差別化戦略から新たな視点を得ることも有効です。さらに、チーム全員で広くアイデアを出し合い、質の高いものへと昇華する、まさに「量が質に転じる」という方法を活用することが求められます。これにより、ライバルとの差別化を図り、独自性を確立することが可能となります。 最新技術で業務革新? 私は、社内のバックオフィス業務全般を担当しており、競合するライバル会社に勝つための差別化戦略を考えることが難しいと感じています。そこで、バックオフィス業務として差別化施策といえるポイントを以下にまとめました。まず、他部門より進んだテクノロジーの導入と活用があります。バックオフィスがAIやRPA、BIツールなどの最新技術を活用することで、業務効率やデータ活用能力において他部門と差別化を図ることができます。これにより、組織内で先進的な位置づけを確立することが可能です。 何がイノベーションを動かす? 次に、イノベーション推進の役割を担うことが考えられます。新しいテクノロジーや手法を導入し、その効果を実証することで、社内全体でのイノベーションをリードすることができます。このようにして、自部署は他部署に先駆けて「イノベーションの推進役」として組織内で差別化を図ることができます。AIツールやRPAツールの浸透度合いがまだ低い中で、これらを駆使して業務効率を飛躍的に向上させたいと考えています。 具体策は何だろう? 具体的な行動としては、AIの活用実績を知見として蓄積し、そのナレッジを教育や研修で全社にフィードバックします。営業部門では旧来の手法から脱却できていないため、様々な階層の研修にあわせて効果的なAI活用による効率化を行っていく予定です。

データ・アナリティクス入門

仮説構築のフレームワークで実力アップ

仮説構築で何を優先すべき? 仮説構築のポイントについて学んだことは、以下の通りです。 まず、仮説構築では複数の仮説を出すことが重要です。3Cや4Pといったフレームワークを活用し、網羅性を持たせることが求められます。決め打ちにしない姿勢も大切です。 次に、仮説を絞り込むための基準としては、具体的なデータや根拠が必要です。たとえば、SNSのプロモーションが弱いと判断する場合、その根拠を明確にする必要があります。 どのデータを用いるべき? データ取得や計測前には、指標の絞り込みが重要です。何を比較すれば仮説が立証されるのかを確認します。例えば、故障件数ではなく、1件あたりの対応時間を指標とすることが有効です。 また、比較対象のデータも集める必要があります。Aが正しいというだけでなく、BやCを否定するデータも必要です。これにより、より説得力が増します。 仮説検証の鍵とは? 仮説には「結論の仮説」と「問題解決の仮説」があり、それぞれの使い分けと違いを意識することが重要です。問題解決の仮説では、社内のシステム切り替えにおいて複数の製品候補の中から1つを選ぶ際、網羅性のある原因究明と問題箇所の特定が求められます。A製品が良いというデータだけでなく、他の製品(B, C)がダメというデータも揃えることで、Aの比較優位性を証明することができます。 フレームワーク選択の重要性 仮説検証のシミュレーションでは、まず仮説の洗い出しを行います。3Cや4Pのフレームワークが適用できるかどうかを検証し、適していない場合は他のフレームワークを検討します。 最後に、データ検証の洗い出しでは、取得可能なデータの確認と、どの指標が計測・取得すべきデータなのかを特定します。これにより、仮説の検証がスムーズに進むでしょう。 以上のポイントを踏まえて、仮説構築と検証のプロセスを実践していくことが大切だと感じました。

クリティカルシンキング入門

伝わるスライドづくりのコツ満載!

適切なグラフの選び方とは? 相手に伝えたいことをスライドで表現する際に重要な点は以下の通りです。 まず、グラフの種類を理解し、伝えたい内容に応じて適切なグラフを選ぶことが大切です。スライドは極力シンプルにし、必要な部分にのみ装飾や色を付け加えるよう心掛けましょう。また、伝えたいメッセージの順番に合わせて図表を配置し、読み手の視線が自然に左から右、そして上から下に動くように工夫します。さらに、読みたくなる文章になるよう、アイキャッチを加えたり体裁を整えたりして、視覚的に引き込みやすくすることも重要です。 準備段階で意識すべきことは? 「スライドを作る前段の労力」という言葉が特に印象に残りました。相手に伝えるためには、データの収集から見せ方、文章の工夫まで多くの努力が必要ということを改めて理解しました。これまで学んできたデータの分解や文章作成の注意点を見直し、実践に活かしていきたいと考えます。 例えば、オリエンテーションのスライドでは、読み手の視線の動きを意識し、文章の硬軟に気をつけて作成することが求められます。メール作成においても、どうすれば学生がすぐに読んでくれるかを考え、アイキャッチを置くことや体裁を整えることが重要です。これによりパッと目に入ってきやすいメールが作成できます。 見直しの重要性をどう考える? スライドを作成する前には、まずそのスライドで何を伝えたいのか、その目的を明確にすることが不可欠です。その目的に沿って、必要な情報を考え、収集します。スライドを完成させた後、装飾が過剰ではないか、重要なポイントが一目で分かるか自分で見直すことが必要です。また、メールなどの文章を作成した後には、自分でも新鮮な目で見直し、伝えたい情報がスムーズに入ってくるか確認するよう心掛けます。 このように、伝え方を工夫することで、相手に確実にメッセージを伝えられるよう努めたいと思います。

クリティカルシンキング入門

グラフとメッセージ、一致させる極意

グラフとメッセージは合致? グラフと見せ方の工夫として、メッセージとの整合性が重要であることが印象に残りました。これまで、既に作成されたグラフをそのまま資料に使用していましたが、本当にメッセージと一致していたかはあまり考えたことがありませんでした。今後は、メッセージと図、グラフの相関性を考慮し、適切なものを選択していきたいと思っています。 フォントの印象はどう? 見せ方の工夫では、フォントや色によって与える印象という点も考えさせられました。これまでは、多くの装飾や色を使っていたため、読み手を意識しつつ、最小限でわかりやすく示すことを心がけたいです。 アイキャッチは効果的? また、読んでもらうための工夫として、アイキャッチや文章の硬軟、体裁が挙げられていました。その中でも、アイキャッチに関しては、人によって受け取られ方が異なるため、一般的にどんな内容ならイメージしやすいかに悩みました。 学んだ知識を活かす? 今回学んだ内容は、以下の自分の業務に活かせると考えました。物性比較やネガティブキャンペーンなどの比較データには、最適なグラフや表を適用し、分かりやすくまとめる方法が使えると思いました。また、社内外の報告用資料やメール、議事録においては、読んでもらう工夫としてアイキャッチを置くことや、体裁を整えて読みやすくすることに役立てたいです。読み手を意識し、内容作成を心がけていきます。 報告書の工夫は? メールや報告書を書く際は、単に文章を書くのではなく、タイトルの工夫や体裁を整えることで、読み手が理解しやすくなるように構成します。パワーポイント資料作成においては、キーメッセージと内容が一致しているか、第三者に確認してもらいます。過剰な強調を避けるためにも、資料作成後に内容を見直します。グラフ作成においても、示したいメッセージとグラフが一致しているかを意識したいと思います。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

データ・アナリティクス入門

データ分析で得た学びの再発見

データ分析の基本を理解する 目的を明確にすること、要素を整理すること、そして比較することがデータ分析の基本だと学びました。特に、分析は比較であるという点が印象に残っています。しかし最も重要なのは、データ分析が「何のため」に行われるのか、その目的を明確にすることだと改めて感じました。ケーススタディではデータ分析が上手くいかなかった例もあり、要因に期間や項目の一般的な回答だけでなく、上司と部下のコミュニケーションについても意見が挙げられていました。そのため、基本に立ち返る必要性を再確認しました。 具体的な要素整理のポイントは? 具体的な要素の整理を心掛けました。例題で行ったPC購入に関するディスカッションでは、メーカー、金額、スペック、OSなど具体化することで、共通認識が得られやすいと感じました。また、分析の際には定量データ同士、定性データ同士を比較することの重要性も理解しました。平均値についての説明は分かりづらい部分もありましたが、先生が示してくれたビジュアルを通じて少しずつ理解が進みました。 退職分析における「目的」の重要性 私は人事部でDX担当をしており、退職分析を行っています。職種、年齢、勤続年数といった要素を洗い出し、比較をしていますが、「目的」を見失いがちです。退職率を下げるだけでなく、「若手の」離職率、「技能職の」離職率といった具体的な目的を持ち、分析を続けていきたいと思いました。また、グラフを作成して終わるのではなく、伝えたい「メッセージ」をしっかり伝えるための改善も進めたいです。 データ分析で立ち止まる瞬間 データ分析を実践することは重要ですが、一度立ち止まって「目的」を考えること、また定期的にその目的に立ち返り確認することも必要だと感じました。私自身、考えすぎる傾向があるため、要素の整理においては柔軟な思考を持つように心がけていきたいです。

クリティカルシンキング入門

効果的なグラフと文字表現で資料作成のコツをつかむ

グラフの表現方法を学ぶ 相手に伝わるメッセージやグラフ、スライドの作成方法を学びました。以下は、個人的な要点の抜粋です。 まず、データやグラフの表現方法についてです。適切に使かえば、表現が豊かになり、相手により伝わりやすくなります。具体的には、グラフ単体がしっかり成り立ち、適切なグラフを選択することが重要です。 文字表現で印象を強化するには? 次に、文字表現の方法です。フォントや色、アイコンを効果的に使用することで、より印象的なスライドを作成できます。この際、伝えたい内容との整合性を考慮することが大切です。 最後に、データやグラフ、文字表現を合わせて意図が明確に伝わるスライドを作成することが求められます。情報とメッセージの順番を合わせ、メッセージにも意図が伝わる一言を添える。グラフにも意図が伝わるポイントを視覚化することがポイントです。 今後の活用計画は? これらを踏まえ、課内共有や営業店向け、他部署向けの資料作成の機会があるので、今後はWeek1から3までで学んだことを用いて、意図した内容が相手に伝わるスライド作成を心がけていきます。 今週の講義で特に学んだのは、グラフの原則や文字表現のコツです。これらを活用し、伝えたい内容の整合性を念頭に置いてスライドを作成します。 資料作成前に意識すべき点 案内文や資料作成に着手する前に以下の点を意識します。 - 要点(伝えたい内容)を整理する。この際、伝えるべき相手の情報をイメージすることを忘れないようにします。 - 草案を固めたうえで、データ・グラフ・文章表現を作成する。 - 初稿を確認して、データやグラフの切り口、表現方法や配置に整合性があるかを確認する。 - 文字表現(言語選択と装飾)やアイコンの活用に整合性があるかを確認する。 以上のポイントを意識しつつ、より理解しやすい資料作成を行っていきます。

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

クリティカルシンキング入門

メールに彩り、伝わる魔法

視覚化はなぜ効果的? <W4 学び、気づき> 視覚化することで、情報が2次元で処理できるようになり、文字情報よりも処理速度が早くなり、齟齬や誤認が起きにくくなることを学びました。これには、適切なグラフの利用だけでなく、伝わりやすい表現方法を身につけることが重要です。また、フォントや色についてはこれまで、自身の感覚や経験に頼って使用していましたが、今回学んだ知識を通じて、意識的に使い分ける必要性を痛感しました。 文書作成におけるポイントに関しても、普段から意識していた内容と大きなズレはなかったものの、具体的なポイントを学ぶことで印象がより強く残りました。特に「相手に知りたいと思わせる」工夫や修辞法の活用は、これまで十分にできていなかったため新たな気づきを得ることができました。 仕事でどう使う? <W4 自身の業務への当てはめ> 業務では、電話よりもメールで社内外と連絡を取り合うことが多いため、伝達内容が多くなると文章が形式ばり、堅い印象になることがしばしばです。そこで、今回学んだフォントや色、レトリックを取り入れることで、相手に分かりやすく伝わる文章を心掛けたいと思います。グラフに関しては、データの正確性に目を向けがちでしたが、今後は自分の主観ではなく、相手の目線を意識して作成や確認を行いたいと考えています。タイトル、単位、色など、細部にわたり注意を払っていきます。 実践はどう始まる? <W4 行動計画> 日々の業務ではグラフやパワーポイントの使用機会が少ないため、今回の学びは主にメール文書作成に活かす予定です。ポイントの強調や最後まで読み進めてもらえる工夫を取り入れるため、会社のスケジュールにリマインダーを設定し、毎朝前週の学びも含め確認するようにします。これにより、最低1ヶ月間は継続して意識を高め、実務に役立てていこうと考えています。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

データ・アナリティクス入門

生の声で伝える挑戦日記

代表値と散らばりとは? 大量のデータを分析する際には、中心的な特徴を示す代表値と、データのばらつきを示す散らばりの両面からアプローチすることが重要です。代表値には、単純平均、加重平均、幾何平均、中央値があり、それぞれの特性を理解した上で適切に活用する必要があります。一方、データの散らばりを把握するためには標準偏差が用いられます。標準偏差とは、平均値から各データがどの程度乖離しているかを示すために、各乖離の二乗和をデータ数で割った値の平方根を意味します。 看護国家試験対策はどうする? 看護師国家試験対策では、4年生進級までの過去の成績を分析し、不得意な科目や分野を特定した上で重点的に補強する方法が提案されます。また、入学試験志願者の選抜においては、成績、出席日数、欠席理由、さらには高校卒業までの活動や志願理由を詳しく分析し、入学前教育に効果的に活かすことが期待されます。 早期支援の進め方は? さらに、早期からの継続的支援として、1年生前期の履修成績を把握した上で夏休み中に補習を実施し、後期終了後にも同様の取り組みを行うことが検討されています。これを各学年で実施することで、4年生にまとめて行う短期間の国家試験対策よりも、より効果的な成果が見込まれます。この取り組みは、大学の教務委員会や国家試験対策委員会に提案し、全教職員の協力のもと、実施体制と行動計画を整えることが前提となります。 書類評価の観点は? 加えて、現在提出される入学試験受験者の書類について、評価の見方や押さえるポイントを明確にすることが提案されています。これにより、入学制度に対するリアリティショックを軽減し、学力不足の傾向に対しても適切な対応策を講じることが可能になると期待されています。現時点では、入試広報部と連携してこの問題に取り組む方針が進められている状況です。

「ポイント × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right