マーケティング入門

顧客目線で気づいた本当の魅力

マーケティングの本質は? マーケティングという言葉は、人によって使い方や意味合いが異なるため、注意が必要だと改めて感じました。また、効果的なアピールとは単に情報を伝えるだけではなく、相手がその魅力を感じることが重要だと思います。ヒット商品に共通するのは、対象となる層や商品の特徴を踏まえた広告戦略であり、消費者がしっかりと魅力を感じなければ、購入に至らないという点です。 顧客視点の見直しは? 売上目標を意識するあまり、売ることだけに視点が偏りがちだと気づかされました。そのため、一度立ち止まり、顧客側の視点から考えることの大切さを再認識しています。また、顧客視点で考えるために必要な情報や知識を整理し、営業チームやパートナー企業との連携で常に情報をアップデートすることの重要性も感じました。今後はこれらを意識して取り組んでいきたいです。 購入決断の理由は? さらに、人がどのような要因で購入決断に至るのか、さまざまな要因やきっかけについて、より深く学んでいきたいと考えています。

データ・アナリティクス入門

検証が導く次の一手

結果の背景は何? PDCAサイクルにおける「C(Check)」の重要性を改めて実感しました。業務では、A/Bテストの結果が出るとすぐに「採用」と「不採用」の判断に偏りがちですが、なぜその結果になったのかという背景や要因の検証が不足していると、本質的な成果や再現性のある改善につながりません。 結果だけで大丈夫? 自身の業務においても、施策実施後に結果だけを見て結論を出す傾向がありました。しかし、今後は仮説とのずれや背景要因を丁寧に分析し、再現性のある改善策を立てる必要性を感じています。 検証で進化できる? そこで、施策の実施後は必ず検証の時間を確保し、PDCAサイクルの「C(チェック)」を強化することを行動計画に盛り込みます。具体的には、仮説と結果の差異を可視化し、原因分析のためのデータを事前に収集・整理する仕組みを整え、定期的な振り返りの場で結果の背景を多角的に検証します。これにより、直感や思いつきに頼らず、根拠ある意思決定を進めていきたいと考えています。

データ・アナリティクス入門

現場で磨く仮説思考の実力

仮説思考の大切さは? ビジネスの現場において仮説思考の重要性を学びました。特に、結果の仮説と問題解決の仮説の両面について、過去・現在・未来という時間軸で考える視点が自分の理解を整理する大きな助けとなりました。 内部監査で疑問は? 私は内部監査の業務に携わっているため、問題解決の仮説を立てる際は、「問題は何か」「どこが問題か」「なぜ問題が起きているのか」「どうすればよいのか」という流れ(WHAT→WHERE→WHY→HOW)に沿って検討することが求められます。たとえば、ある事業計画がどのような前提に基づいて構築されているのか、将来の結果に対する仮説についても考える必要があると感じました。 仮説の整理方法は? さらに、自分が提示する仮説や被監査部門の結果としての仮説は、フレームワークを適宜活用し、抜け漏れなく論点を整理することが重要です。実際、問題の特定には成功しても、原因の深掘りが不十分な場合が多いことから、今後はその点にさらに注意して取り組んでいきたいと考えています。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

クリティカルシンキング入門

先ずは結論!スマートプレゼン術

ピラミッド構造は効果的? 上司に店舗改善案を報告する際や、店舗スタッフに会社で決定した事項を通達する際に、ピラミッド構造の考え方が役立つと実感しました。また、プライベートでは、面白い映画を友人に紹介する際に、この手法で論理的なプレゼンテーションを行えば、魅力がより伝わると感じています。どのシチュエーションでも、相手の貴重な時間をいただいて話すという意識を持つことが大切だと考えています。 結論を先に示す理由は? まず、頭の中で内容を整理し、重要な点を構造化することが必要です。特に、結論を先に示すことで、話の要点が明確になり、聞き手に伝わりやすくなります。これを実践するため、週一回の上司との面談前に、あらかじめピラミッド構造に基づいた準備を行い、指導を受けながらスキル向上を図る予定です。 自分の表現力向上は? さらに、メールを作成する際は、AIに頼らず自分の言葉で作成するよう努めます。また、週に一度、約400字の文章作成にも挑戦し、論理的な表現力を高めることを目指します。

マーケティング入門

付加価値創出で未来を拓く

付加価値はどう見極める? モノに単に対価を設定するのではなく、常に付加価値があるかを考える習慣が大切だと感じました。具体的な見せ方や利用シーンの提案を通じて、体験価値を創出することが売上向上につながると考えています。また、体験価値の定義に関しては大きな金銭コストがかからないため、積極的にアイディアを出していきたいです。 差別化はどう伝える? 価値提案を構築する際には、プロダクトの差別化と競争優位性を明確に伝えることが必要です。自社の商品が従来とは異なるターゲット層にも受け入れられる可能性や、これまで提案されていなかった利用シーンをどのように訴求できるかを、高い視座で分析し、まとめることを目指します。 強みと弱みはどう見る? さらに、フレームワークを活用して自社の強みと弱みを網羅的に把握することが重要です。自身だけでなく、同僚のフィードバックを取り入れながら、抽出した強みと弱みをもとに、これまでにない体験価値や利用シーンを具体的に言語化していきたいと考えています。

データ・アナリティクス入門

ABテストで成果を生むコツと課題

問題の原因をどう探る? 問題の原因を探るためには、まずプロセスを整理し、どの部分に課題があるのかを特定することが重要です。複数の仮説を立てて、それぞれの解決策を丁寧に検討する必要があります。ABテストは、少ない工数で低リスクに検証ができるため、おすすめの方法です。 ABテストの利点と課題は? 今回のテーマは自分の日常業務に近かったため、より理解が深まりました。ABテストについては、各媒体がAIで最適化するケースが増えており、実施が容易になっている一方で、「なぜこちらの方が成績が良いのか?」といった点が理解しにくくなり、次回に活かすのが難しいと感じます。 重要な視点をどのように意識する? 重要なのは、What、Where、Why、Howの視点を意識することです。ついついHowの検討に集中してしまいがちですが、プロセスを分解し、仮説を立てる手順を怠らないようにしたいです。また、仮説を立てるためには内部・外部の両面からの知識が必要ですので、情報収集の重要性も再認識しました。

データ・アナリティクス入門

平均に隠されたデータの真実

代表値の意味は? データを理解する際、代表値の考え方が基本であると学びました。代表値には単純平均、加重平均、幾何平均、中央値などがあり、たとえ二つの集団で平均値が同じでも、ばらつきの度合いによって集団の実態は大きく異なることがわかります。ばらつきは標準偏差という指標で表され、また、グラフを用いてデータを視覚化することで、説得力が増すことも学びました。 報告書のポイントは? 報告書にデータやグラフを用いる際には、より意味のある情報を見出すことが重要です。平均値だけでは集団の性質を十分に理解できないため、ばらつきなど他の要素も加味し、「本当にそう言えるのか?」と多角的に考える必要があると感じました。 分析目的は何? そのため、まず何のための分析なのか、その目的を明確にすることが大切です。次に、必要なデータを特定し、信頼できる情報源から取得すること。そして、代表値や標準偏差をどう活用すれば集団の性質が理解できるのかを考慮しながら、データを適切に扱いたいと思います。

データ・アナリティクス入門

具体を引き出す対話の魔法

目的をどう明確化? 分析の目的を明確にすることの重要性を実感しました。データを活用する相手がどのような目的で情報を求めているのか、コミュニケーションを通して具体的に確認する必要があります。しかし、実際に会話をすると、目的が漠然としていたり、具体的な内容が伝えられないケースが多く見受けられました。そのため、抽象的な要素を具体的な内容として引き出すヒアリング力が非常に重要だと感じています。この過程で、仮説設定や比較対象の選定がより明確になり、全体の分析基準がしっかりと定まると考えます。 営業データは何を示す? また、営業活動においては、提供するデータがますます重要になっています。特に、自社製品の導入理由を明確に説明することが求められる中、競合他社との比較において自社製品を選ぶ根拠を明確なデータで示すことが必要です。営業と意見を共有しながら、データ活用の目的を具体的に明確化し、客観的な視点を保った説得力のあるデータ提供を行うことで、導入率の向上につなげたいと考えています。

データ・アナリティクス入門

試行錯誤が未来を拓く

プロセスはどう進む? 問題解決のプロセスでは、目の前の事象に飛びつかず、複数の選択肢を用意してテストを行いながら、仮説検証を繰り返すことが大切だと感じました。その過程で根拠を持って絞り込みを進めることが必要です。 分析は何を示す? また、データを収集して分析するアプローチも重要です。仮説を試しながら同時にデータの収集を進め、より良い解決方法を探ることが求められます。今の時代は動きが早いため、あれこれ考えすぎるよりも、実際に動きながら考え、必要に応じて迅速に修正していく体制が不可欠と感じました。 運営支援はどう変わる? さらに、コミュニティ運営サポートにおいては、データ分析の手法が多岐に渡ります。特に受講生の満足度についての調査を通して、彼らがどのような興味や関心を持っているのかを理解し、退会率を抑えるための施策を検討する必要があります。そのためには、ABテストなどを用いて実際の反応を確かめながら、求められているサービスを提供していくことが欠かせないと感じました。

データ・アナリティクス入門

仮説とデータで見える未来

仮説思考はなぜ必要? 仮説思考の大切さを改めて実感しました。日々得られるファクトに対して「なぜ?」や「どうすれば良いか?」と疑問を持つ中で、あらかじめ仮説を設定することで業務上の疑問点や関心事に対し、より具体的なアプローチが可能となり、結果として業務の精度が上がると感じました。 データの活かし方は? また、データ収集においても、ただ数多くの情報を集めるのではなく、データの特性を十分に理解した上で、絞り込んだ活用を行う必要性を感じました。実績の分析に際しては、例えば「この時期だから売上が伸びないのか」や「この季節だから売り上げが良いのか」といった視点で、状況を整理することが有効でした。 記録の意義は? さらに、手元にあるデータやメモを活用し、気になった点や疑問点を記録しておくことは、仮説の検証や業務改善に直結する重要なプロセスであると感じました。日々その記録を見返しながら自問自答を繰り返すことで、自分なりの解を持ち、分析を重ねる姿勢が身に付いたと思います。

クリティカルシンキング入門

伝える力は色と文字の魔法

色と装飾の工夫は? 伝えたい情報を強調するためには、伝えたい箇所を一番に捉え、文字の大きさ、色、ラインなどを工夫して目立たせることが大切です。特に色は印象を大きく左右しますので、日常生活の中で企業の商品がどのような色を使用しているか、またその色が何を表現しているのかを意識的に学ぶことが重要だと感じました。 資料作成の注意点は? また、スタッフ向けの説明資料「キーメッセージ」では、伝えたい内容を明確にするために、文字の大きさや色、装飾に十分注意して作成する必要があります。医療の勉強会など文字情報が中心となる場合には、図解などの視覚的要素を取り入れることで、より効果的に情報を伝えられるでしょう。 アイデアの活用法は? ・タイトルで要点が分かるように記載する ・日常の製品から学ぶ機会を積極的に作る ・他人からのフィードバックを受け、改善の機会を設ける ・本、雑誌、各種SNSなどで目を引くワードが見受けられた際には、自身の部署での活用を検討する

「必要 × 重要」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right