データ・アナリティクス入門

仮説が照らす新たな一歩

結論と解決をどう見極める? 仮説には、論点に対する一時的な答えとしての「結論の仮説」と、具体的な問題解決を推進する「問題解決の仮説」があるという考え方があります。複数の切り口から仮説を立て、そこから焦点を絞っていくことで、決め打ちせず柔軟に検証を進めることができます。 仮説と検証はどう活かす? このアプローチにより、検証マインドや説得力、問題意識が自然と向上し、分析のスピードおよび行動の精度が高まると感じています。たとえば、営業活動の最適化を図る際には、既存のデータから読み取れる情報に加え、どのようなデータがあれば反論を排除できるかを考慮した仮説を設定し、必要なデータを収集することが重要です。 BI導入で何を学ぶ? また、BIツールを活用した経営ダッシュボードを作成する際は、単に事実を表示するだけでなく、社員が仮説を立て行動につなげられるよう設計する工夫が求められます。納得してもらえる仮説の立て方を学ぶことが、効果的な分析や営業活動の最適化に直結すると実感しています。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

データ・アナリティクス入門

現場で磨く仮説思考の実力

仮説思考の大切さは? ビジネスの現場において仮説思考の重要性を学びました。特に、結果の仮説と問題解決の仮説の両面について、過去・現在・未来という時間軸で考える視点が自分の理解を整理する大きな助けとなりました。 内部監査で疑問は? 私は内部監査の業務に携わっているため、問題解決の仮説を立てる際は、「問題は何か」「どこが問題か」「なぜ問題が起きているのか」「どうすればよいのか」という流れ(WHAT→WHERE→WHY→HOW)に沿って検討することが求められます。たとえば、ある事業計画がどのような前提に基づいて構築されているのか、将来の結果に対する仮説についても考える必要があると感じました。 仮説の整理方法は? さらに、自分が提示する仮説や被監査部門の結果としての仮説は、フレームワークを適宜活用し、抜け漏れなく論点を整理することが重要です。実際、問題の特定には成功しても、原因の深掘りが不十分な場合が多いことから、今後はその点にさらに注意して取り組んでいきたいと考えています。

戦略思考入門

共通認識が開く改善の扉

議論の進め方は? 同じテーマを複数人で検討する場合、効率的かつ効果的に進めるためには、目的やゴールに沿ってどのように議論を進めていくのか、検討すべき要素に共通の認識を持つことが不可欠です。これを整理しないと、各人が自分の関心に基づいて検討を進めてしまい、視点がずれてしまいます。 どうやって認識合わせ? 共通認識を形成するためには、まず検討対象を俯瞰的に捉え、漏れなく重複なく要素を抽出することが重要です。その際、3C分析、SWOT分析、バリューチェーン分析などのフレームワークが非常に有用です。 改善策はどうする? 具体的なアプローチとしては、まず自分が担当している事業について、これらのフレームワークを活用して分析を行います。そして、その分析結果を同じチームのメンバーと共有し、今後の改善策について議論することが求められます。特に、バリューチェーンのどこに課題があり、コスト分析を通じてどの部分がネックとなっているのかを明らかにすることが、改善策の策定に役立つと感じました。

クリティカルシンキング入門

ナノ単科で始める自分再発見

どうして自己批判? クリティカルシンキングとは、自身を批判的に捉えることで、他者に納得感を与えるための思考法です。その実践により、自らの意見や行動の根拠を客観的に見直すことが可能になります。 なぜMECEを使う? また、思考を始める際には、まず抽象度の高い項目をMECE(漏れなくダブりなく)に整理することが推奨されます。一見遠回りに感じられるこのプロセスですが、結果として迅速に内容が整理でき、論理的な考察に繋がります。 広告の位置づけは? さらに、お客様への情報刺激として広告の役割を考える際は、該当施策が全体像においてどの位置づけにあるのか、俯瞰的な視点で判断することが重要です。自身の経験や一見した印象だけに頼らず、客観的な検証が求められる場面です。 上司提案はどうする? さらに、上司への提案を行う場合には、あらかじめ自分の意見に対する批判的な視点を持ち、予想される反論に対して準備をしておくことが有効です。これにより、説得力のある提案が実現できます。

クリティカルシンキング入門

ビジネス文章力が劇的にアップする学び

なぜ他者目線が重要か? 日本語は主語がなくても文脈で理解できることが多く、そのために本質や要点が伝わりにくいことがあります。この点を改善するため、他者目線で伝わる文章を心がけることが重要です。 フレームワークで整理する利点 私の役割上、完結な文章での発信や引継ぎが求められるため、特に文章の構成に注意を払うようにしています。例えば、大事な局面ではピラミッドストラクチャーのようなフレームを意識することで、整理された文章を伝えることができます。これにより、提案も通りやすくなり、相手への負担や無駄を減らすことができます。 提案の成功には何が必要? 営業相手への文章やプレゼンの構成では、常にフレームを意識し、相手にどう伝わりやすいかを考えることが大切です。本来承認してもらえる提案も、文章のわかりやすさや納得感の不足でやり直しになることがあります。したがって、初めからしっかり整理した文章で提案することが望ましいです。こうすることで、お互いが無駄なく効率的に働けるようになります。

データ・アナリティクス入門

代表値だけじゃない分析の魅力

代表値は何が最適? 代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、データの内容に応じて使い分けることが求められます。たった一種類の代表値だけを見てしまうと、判断を誤る可能性があるため、標準偏差も含め、データがどれだけ散らばっているか、もしくはまとまっているかといった視点も重要です。 データはどう分析? これまで契約データの分析では、各代表値をそれぞれの視点から確認し、常に多角的なアプローチをとってきました。これにより、一方に偏ることなく、データ全体の特徴をしっかりと把握することができました。CAGRを用いていた部分も、実は幾何平均の単年度バージョンとして捉えることができると考えています。 今後の判断はどう? 今後も、ただ一つの代表値に依存するのではなく、複数の指標を参照しながら、データ群にどのような特徴があるのかを判断したいと思います。そして、分析の目的に立ち返り、適切な分析手法やグラフの選択を通して、より正確な業務遂行を目指します。

アカウンティング入門

数字の裏側で見える経営の真実

利益と価値の関係は? コストを正しく理解することは、顧客に提供する価値を見極める上で重要です。利益獲得の状況は、利益額と利益率の両面から評価すべきです。たとえば、あるカフェビジネスのケースでは、ミノルとアキコがともに営業利益3%を実現していたものの、実際の金額には大きな差が見られました。 利益管理の難しさは? また、担当するポジションによっては、最終利益に至るまでの利益管理が求められる場合があります。しかし、外部からの評価はあくまで最終利益を基準として行われるため、この点を意識する必要があります。 競合分析のポイントは? 次に、競合他社の分析も重要です。まずは全体の動向を把握し、費用対売上高の効率性を中心に検証します。その際、マーケットシェアとの関連性にも注目することが望まれます。 損益比較のコツは? さらに、競合他社の損益計算書(P/L)を確認し、決算短信に記載されているビジネス概要のコメントを参考にしながら、自社のP/Lと比較してみることが効果的です。

データ・アナリティクス入門

具体を引き出す対話の魔法

目的をどう明確化? 分析の目的を明確にすることの重要性を実感しました。データを活用する相手がどのような目的で情報を求めているのか、コミュニケーションを通して具体的に確認する必要があります。しかし、実際に会話をすると、目的が漠然としていたり、具体的な内容が伝えられないケースが多く見受けられました。そのため、抽象的な要素を具体的な内容として引き出すヒアリング力が非常に重要だと感じています。この過程で、仮説設定や比較対象の選定がより明確になり、全体の分析基準がしっかりと定まると考えます。 営業データは何を示す? また、営業活動においては、提供するデータがますます重要になっています。特に、自社製品の導入理由を明確に説明することが求められる中、競合他社との比較において自社製品を選ぶ根拠を明確なデータで示すことが必要です。営業と意見を共有しながら、データ活用の目的を具体的に明確化し、客観的な視点を保った説得力のあるデータ提供を行うことで、導入率の向上につなげたいと考えています。

データ・アナリティクス入門

試行錯誤が未来を拓く

プロセスはどう進む? 問題解決のプロセスでは、目の前の事象に飛びつかず、複数の選択肢を用意してテストを行いながら、仮説検証を繰り返すことが大切だと感じました。その過程で根拠を持って絞り込みを進めることが必要です。 分析は何を示す? また、データを収集して分析するアプローチも重要です。仮説を試しながら同時にデータの収集を進め、より良い解決方法を探ることが求められます。今の時代は動きが早いため、あれこれ考えすぎるよりも、実際に動きながら考え、必要に応じて迅速に修正していく体制が不可欠と感じました。 運営支援はどう変わる? さらに、コミュニティ運営サポートにおいては、データ分析の手法が多岐に渡ります。特に受講生の満足度についての調査を通して、彼らがどのような興味や関心を持っているのかを理解し、退会率を抑えるための施策を検討する必要があります。そのためには、ABテストなどを用いて実際の反応を確かめながら、求められているサービスを提供していくことが欠かせないと感じました。

データ・アナリティクス入門

データ分析の新たな視点を学んで気づいたこと

新たに学んだ加重平均とは? 加重平均を新たに学びました。外れ値がある場合に平均値で表せないことは感覚的には理解していましたが、加重平均を用いて計算したことはありませんでした。また、成長率についても単純に年数分の成長を年数で割るものではないと知っていましたが、直感的にすぐに計算できる方法を知りませんでした。このため、幾何平均も新たに学びました。 学んだ方法の活用を考える 現在の業務では、前年比を用いており、今回学んだ方法を使用する場面はほとんどないと考えています(会社的に求められていない)。しかし、個人的な興味や研究として、各種費用の値上げ率を幾何平均で算出し、物価上昇率との相関を見てみたいと思います。 個人的な興味とデータ分析 会社としてのアウトプットは求められていませんが、個人的な興味として、学んだ手法を各種データに当てはめて試してみるつもりです。これにより、これらのデータ分析が本当に不要なのか、それとも必要なのに見落としているのかを検証してみたいと思います。

クリティカルシンキング入門

思考の癖を見直し、多角的視点を鍛える

自分自身の思考を問い直す 人は思考に偏りがあり、経験に基づいた発想に寄りがちな習性があることに気づきました。そのため、自分自身の思考の偏りを自覚し、「3つの視」を活用して違う見方がないか問い続けることが重要だと感じました。また、瞬発力が求められる場面と持久力が求められる場面のそれぞれに応じた対応力を身に着ける必要があると理解しました。 課題解決に役立つ気づきとは? 業務の改善や改革を企画・検討する際には、課題の本質を見極めるためにこの気づきを活用したいと考えています。日々の会議でも、自分の意見に偏りがあることを意識し、広い視点を持って他の見方がないか探りながら発言をブラッシュアップしていきたいと思います。 ロジックツリーで見解を深める 企画検討の際には、ステークホルダーごとの視点から物事を多角的に見ることを意識的に行い、ロジックツリーを使って分解し整理します。また、会議では経験に基づく反射的な回答は避け、問いかけの本質を見極めた上で、意見を出すことを心がけます。

「求め」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right