データ・アナリティクス入門

異なる視点で学ぶビジネス洞察力

どんな発見があった? 演習を通じて、様々な背景や経験を持つ人々が異なる視点でアイデアを出し合う面白さを感じました。今回の学習では、いくつかの前提や仮説があらかじめ定義されていましたが、実際のビジネスの現場では、表面的な事象(例えば売上げの減少)に対して、どのような前提を確認し、どのような仮説を立てるのか、さらにそれをどのように検証していくのかが重要です。この試行の回数も含めたプロセスが必要だと感じました。 現状分析はどう考える? 自社のビジネス分析全般に応用できるフレームワークだと思います。特定のサービスやアドオンの売上げ増減の理由を分析し、その再現性を確認して次の施策立案に繋げる振る舞いは、特に営業系の領域では常に求められています。 カウンター施策は何か? たとえば、前四半期ではある製品の低価格版の失注率が高かったとします。それに対して、他社がSMB向けに競争力のあるキャンペーンを実施していたことが判明し、それに応じたカウンター施策やカウンタートークの検討が必要となるように、課題の発見から分析・施策立案のサイクルを意識的に回してみることが大切です。

戦略思考入門

差別化戦略を考えるヒント

顧客の価値はどう見極める? ターゲットとなる顧客にとって、価値のあるものをしっかりと捉えることが重要です。顧客が魅力を感じなければ、その差別化は意味をなさないからです。また、顧客視点で誰が競合となり得るか、思わぬ業界や業種が競合になる可能性も考慮する必要があります。さらに、実現可能で持続可能な差別化、すなわち他社にすぐ真似されない対策を意識して差別化施策を打ち出すべきです。 営業とマーケティングはどう活かす? 営業においては、顧客が求めているものを把握し、他社の差別化ポイントを考慮しつつ、自社の差別化要素を整理することが求められます。この情報を踏まえた上で日々の営業活動や商談に取り組むことが重要です。マーケティング部門でも、新商品や新サービス・ソリューションを開発する際に、今回学んだ差別化の考え方が役立つ場面がありそうです。 自身の業務にすぐ活かすのは難しいかもしれませんが、自社の商品やサービスを考える際には、顧客にとって価値があるか、他社と比較してどうか(真似されにくいか、既に行われているか、その規模感はどうか)を常に意識する習慣をつけることが大切です。

データ・アナリティクス入門

分析の力で新規事業を成功へ導く

分析とは何かを考える 今週、私が学んだ点は以下の2つです。 1つ目は、「分析とは比較すること」です。比較しなければ、その数字から何が言えるのかわからず、数字を出すだけではあまり意味がありません。 分析目的の明確化が重要 2つ目は、「分析の目的を明確にすること」です。何のためにデータ分析を行うのか、それを行うことで自分は何を成し遂げたいのかを明確にしなければ、データの整理や加工の方法もわかりません。 実証実験の進め方と意義 私の部門では新規事業開発を担当しており、日本各地で実証実験を行っています。実証目的に紐づいたデータ取得の設計と分析・評価を行い、実証結果を基に次の方向性を探る際には、数字を用いて周囲に納得感のある説明を行うことが求められます。 データ分析のスキルをどう向上させるか 現在の業務の方向性を整理し、実証実験の意義と目的を改めて明確にすることが重要です。また、データ分析を専門とする教授とディスカッションしながら実証実験のデータ取得方法を設計し、実証後のタイミングで有効なデータを用いて自身で結果を評価できるようにすることが目標です。

戦略思考入門

フレーム活用で広がる戦略の可能性

戦略思考はどう磨く? 戦略的に考えるためには、自己の経験や感覚に頼るだけでなく、フレームワークの活用や他者の視点を取り入れながら抜け漏れなく整理することが重要だと学びました。また、フレームワークを使ったとしてもそれだけで万能になるわけではなく、本当に大切な要素を選び抜くセンスと大胆さが求められ、実践を通して戦略的思考を磨く経験が不可欠だと感じています。 分析手法はどうする? 3CやSWOT分析の概要や方法は理解していたものの、実際の業務の場面では十分に活用できていなかったと実感しています。現在携わっている中期戦略の検討において、これらのフレームワークを積極的に取り入れてみたいと考えています。 競合とブランディングは? 特にコーポレートブランディングの領域では、これまではあまりフレームワークを用いてこなかったため、SWOT分析を通じて自社の強みや弱み、外部環境の影響を整理し、3C分析では市場・顧客および競合の状況を評価することに挑戦したいと思います。ただし、3C分析で「競合」の範囲をどの程度広く設定するかについては、引き続き検討が必要と感じています。

データ・アナリティクス入門

データ分析の新しい一歩を踏み出す

データ分析の基本とは? データ分析とは、単なる集計ではなく、比較を通じて意味を引き出すことです。具体的には、有意義なデータを比較し、仮説を立て、その仮説を検証するために、比較対象以外の条件を可能な限り一定に保ちながらABテストを実施することが求められます。 エンゲージメントを高めるためには? データ分析においては、適切な情報を選別することが重要です。例えば、SNSコンテンツのオーガニックポストのエンゲージメントデータを見ることで、どの国でどのようなコンテンツが注目されているかを理解することができます。その上で、さらに具体的に、投稿の時間帯やフレーズ、サムネの違いに焦点を当てたテストを行うことで、より効果の高い手法を見つけることが可能となります。 データの傾向を見極めるには? したがって、データの比較を深め、傾向を分析することに時間と労力を割く価値があります。決まった時間にインサイトをモニタリングし、データの傾向を知る時間を計画的に設けることが大切です。これにより、仮説を立て、有意義な投稿テストを実施することで、より深い知見を得られるでしょう。

データ・アナリティクス入門

仮説の立て方で差がつくビジネス成果

データ比較はどう捉える? データは比較によってその価値が際立ちます。「何と比較するか」が特に重要です。仮説を立てる際には、フレームワークを活用し、網羅性を確保することが肝心です。また、仮説を切り捨てる際には、なんとなくではなく、はっきりとした理由を持って切り捨てることが必要です。 商品の見直しはどう? 売上が低迷している商品のリニューアル方針を考える際には、自社および他社の新商品や売上が好調な商品、不振な商品の販売動向や購買者の分析が求められます。特に間接競合においては、「何と比較するか」の経験的な蓄積があまりないため、これは大いに活用できる視点です。新商品のコンセプト評価が芳しくない場合には、方向転換も検討すべきです。 仮説検証の鍵は? 仮説を立てるプロセスでは、前提を疑い、フレームワークの活用や他部署からの意見を取り入れることで、網羅性を持たせることが重要です。仮説を検証する際には、比較対象を慎重に選ぶ必要があります。また、仮説を絞り込む段階では、切り捨ててよい理由を明確にしておくことが、今後同様の案件が発生した際にも活用可能な知見となります。

データ・アナリティクス入門

データ分析で業務改革を目指す学び

データ分析で重要なのは? 現在、実務の初歩的なデータ分析に触れる機会はあるものの、改めて分析手法を体系的に理解することができました。特に、データ分析においては課題設定と仮説が極めて重要です。ただ単に分析手法の知識を持つだけでなく、領域知識も必要となるため、日常業務では特に業務理解を深めることを意識していきたいと思います。 業務改革で何が求められる? 業務改革の根拠としてデータ分析を利用することが多いですが、第1週の学習を通じて、私が現在取り組んでいるのは、分析というよりもむしろ集計や可視化に近いことを理解しました。したがって、まず課題の設定や仮説に基づいてどのようなデータで比較するかを慎重に検討し、情報を収集することから始めるべきだと考えています。 領域知識を高めるには? また、課題設定や仮説を立てるための領域知識が不足しています。そこで、領域知識の向上を目指しながらも、分析を進めるためには周囲の協力を仰ぐことも重要だと感じています。データが複数のシステムにまたがって保存されているため、一度どのようなデータが存在するのかを整理することが重要です。

クリティカルシンキング入門

思考の制約が導く深い解答の鍵

制約が生む思考の深さとは? 私は、思考において制約があるほうが解答を導きやすく、制約がない場合の方がかえって困難な思考になりがちであることに気づきました。人間は、簡単に考えたことよりも、少し深く考え、もうワンステップ努力することで、より良い答えを得られると感じました。 顧客の本質をどう捉える? IT業界で営業職をしている私は、顧客の問題や課題を聞き出し、システム化のニーズや条件を理解した上で、顧客要件に合ったシステムを提案する機会が多くあります。この際に、顧客が何を求めているのかを正確に聞き取り、それに対する提案を行う場面で今回学んだ考え方を活用できればと思っています。また、社内での受注審議における説明など、多くの人に物事を説明する場面での事前準備にも応用できそうです。 効果的な提案の準備法 具体的には、顧客要件をなるべくシンプルに書き出し、提案ポイントを整理してそれがマッチしているのかを検討します。さらに、自作の説明資料に対して他者から質問を想定し(自分ならどこを質問するか)、その想定問答を資料のブラッシュアップ時に活用していきたいと思います。

クリティカルシンキング入門

データで切り開く健康革命!

問いはどう整理する? この事象を考える際、まず問いを明確にすることが重要です。その問いを常に意識し、流されずに立ち止まる姿勢が必要です。また、その問いについて組織全体で方向性を共有し、具体的な理由や方法を知りたいと思わせるような資料を作成することで、モチベーションの向上につなげていきましょう。 健診データはどう活用? 健診結果や保健指導で得られたデータを活用し、健康意識の向上にどのように寄与できるかを考え、健康教育を企画することが求められます。このデータを駆使して特定保健指導対象者の減少を目指しましょう。さらに、健康意識を自立化させるための最初のステップを見極め、知識を提供することが重要です。 健康教育はどう進展? 半年以内にデータをまとめて分析し、1年以内に健康教育を実現することを目指します。特定保健指導では、自社のデータや傾向を示すことで、メタボリックシンドロームの解消に貢献したいと考えています。健康意識の自立化にはさまざまな手法を用いた仕組みづくりが必要であり、そのためには業務分担を明確にし、中長期的な視点で実践していくことが求められます。

アカウンティング入門

未来を見据えるB/Sの新戦略

B/S活用はどう変わる? これまで、B/Sは「どれくらい資金を保有しているか」や「返済する必要がある資金の量」を中心に捉えていました。しかし、今後は自社ビジネスの成長のために、どのように資産を活用し、いかに資金を調達するかという将来像を描くためにもB/Sを活用できると実感しました。そのため、成功している同業他社のB/Sと比較し、自社の将来像を考察する必要があると考えています。 具体的には、以下の点が重要だと感じました。 将来の計画はどう考える? まず、自社の事業計画や資金調達計画を立てる際には、現状だけでなく将来を見据えた視点が欠かせません。現在の提供価値に加えて、将来的に求められる資産やその調達方法についても検討する必要があります。 成長戦略は何を学ぶ? また、これまでの業務では、過去の決算などの数値分析に重点を置いてきましたが、今後はこれらの数値を成長戦略に生かすため、将来志向のアプローチを取り入れたいと考えています。成長している企業や成功した企業が採用している戦略を学び、新たな技術やビジネスにも積極的に取り組む姿勢を持ちたいと思います。

データ・アナリティクス入門

数字で読み解く成長ストーリー

代表値で分かる? データの状況を評価するためには、単純平均、加重平均、幾何平均といった代表値や中央値が用いられます。平均値は計算が簡単で直感的に理解しやすい一方、極端な値(外れ値)の影響を受けやすいという面があります。そのため、データのばらつきを示す標準偏差と併せて確認することが重要です。 小規模店舗見えてる? 複数の店舗の売上やイベントの各店舗での来場者数などを平均値だけで評価すると、店舗ごとの規模や条件の違いから、小規模な店舗や一時的な変化を見落とす可能性があります。こうした場合、標準偏差や中央値などの指標を追加することで、より詳細な状況把握が可能となります。 分析体制整える? レポート作成においては、平均に加え中央値、最頻値、標準偏差など複数の代表値やばらつきの指標を数値化することで、微細な変化に気づきやすい分析体制を整えることが求められます。さらに、ヒストグラムや折れ線グラフ、棒グラフなどを用いて直感的に理解できる分析を行い、Lookerstudioやスプレッドシートでテンプレートをあらかじめ用意しておくと、作業の効率化にも寄与します。

クリティカルシンキング入門

偏りを超えて挑む健康イベントづくり

どう多角的に考える? 自分の考え方が偏ってしまうことが多いと自覚しているため、あらゆる方面から物事を見られるように見識を深めたいと考えています。問題解決にあたっては、周囲の意見に流されやすくぶれてしまうことがありました。しかし、今後は他人の意見に流されずに、問題を一つずつ分解して課題を明確にしていきたいです。 どの企画が魅力的? 健康課題を明確にし、健康意識を高めるイベントを企画するには、年齢や性別だけでなく、部署の結束度合いや地域性、キーパーソンの有無などを調査し、何を求めているのかをしっかり把握することが重要です。相手に見やすく伝わりやすい資料を準備して説明し、一人でも多くの参加者を募り、楽しめる企画を作り上げたいと考えています。 分析で何を知る? 健康診断の結果を分析し、何が課題なのかを明確にした上で、部署の傾向を把握し、一人でも多く参加でき楽しめる企画を検討します。イベント企画の説明には、興味を引くような資料を作成し、普段からコミュニケーションを大切にして、会社や組合に協賛を得られるように、一緒に盛り上げられる環境を整えていきたいです。

「求め」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right