データ・アナリティクス入門

ABテストで見える進化の軌跡

どうプロセスを分解する? どこに問題があるかを明確にするため、プロセスを段階ごとに分解することが重要です。まず、問題発生箇所(Where)を複数の切り口で特定し、それぞれに対してABテストを実施することで仮説検証を行います。こうした手法は、効率的なコストパフォーマンスに寄与すると同時に、その後の具体的な取り組み(HOW)を事実に基づいて策定するために欠かせません。 どうデータを把握する? 私は製薬会社でMRを担当しており、担当エリアの製品が伸び悩んでいる状況をデータ分析によって明確に把握しました。売上や市場シェアの推移を詳細に検証することで、次のアクションに向けた具体的な問題点の特定が可能となりました。たとえ、担当者固有の感覚や直感に頼りがちな部分があっても、事実ベースの行動こそが仮説検証を丁寧に進める鍵であると実感しています。 何が効果的なABテスト? 具体的なABテストとしては、Aパターンではメディカル専門部署との同行訪問を実施し、Bパターンでは他施設での成功事例を共有する取り組みを行いました。一定期間のテストを経て、どちらのアプローチがより効果的であったかを定量的に評価し、その結果を基盤に最適な施策をエリア全体に展開する方向性を見出すことができました。 どう成長を促進する? 担当エリアの製品成長を促進するための手順は、まず現状把握として売上や市場シェアを分析し、成長が停滞している顧客層を見定めることから始まります。次に、影響力のあるキーパーソンや波及効果の大きい対象をリストアップした上で、仮説を設定しABテストを実施します。その後、テスト結果を定量的に比較し、最も効果が高い施策をエリア全体に適用し、次のアクションに反映させるという流れで進めています。

戦略思考入門

ターゲット特定で差がつく!競合分析の極意

ターゲットは誰? 差別化を考える際に重要なのは、ターゲットを明確にすることです。これは、誰に向けたものなのかをはっきりさせることで、非常に有益な学びとなりました。差別化をするためには、広い視点で情報を整理することが前提条件となります。たとえば、フレームワークを使って対象をもれなく整理することが効果的です。 顧客視点はどう? また、顧客視点で誰が競合となりうるのかを把握し、価値あるアプローチを模索することも重要です。焼肉店の競合が回転寿司であるように、同業界に限らず、異なるものが顧客に価値を提供し、競合の一部となり得る場合もあります。そのため、施策を立案する際には実現可能性と持続可能性、すなわち簡単に真似されない工夫が必要です。 両軸の価値は? 私たちのサービスはToBとToCの両軸にまたがるため、それぞれの軸でターゲットが誰であるか、どのような価値を提供できるかを考えることが求められます。そして、その上で具体的な施策を検討する必要があります。自部署にこれを当てはめる際には、企業を顧客としてターゲットが価値を感じるかを深掘りし、差別化を進める方法を模索します。 競合の広さは? 競合に関しては通常、同業他社に注目しがちですが、それだけでなく、広い視野で把握することも欠かせません。差別化を行う前に、VRIO分析を通じて自部署にどのような強みがあるかを確認し、それがどのように差別化につながるかを整理します。 自部署の強みは? 自部署のVRIO分析に基づき、提供できる価値を明確化し、差別化戦略を検討します。また、これを自部署内でアウトプットする機会を設け、積極的に意見を集めることで、さらなる深掘りを進めていきたいと考えています。

戦略思考入門

真似されず輝く自社の魅力

講座受講の本当の意味は? 今回の講座を受講する理由は、経営戦略の学びが自身の業務にも深く関係している点です。特に、顧客にとって価値があり、選ばれるための差別化が重要な視点だと感じています。 差別化の本質は何? これまで「差別化をしたい、考えたい」とよく思っていましたが、具体的に深掘りする方法が分からず、また「真似されるな」と主張していたものの、真似されるものはそもそも差別化とは呼べないと気付きました。加えて、差別化を実現するにあたり自社の強みを意識する中で、真似できないソフト面が今の組織の大きな強みであると認識し、これを大切にしていきたいと考えています。 VRIOを活かす秘訣は? また、VRIOの考え方が非常にわかりやすかったため、さっそく現業務に活用したいと思います。自分の事業内容の見直しの際に、特に情報配信やイベントでの差別化の方向性を模索していたため、学んだ内容が具体的なヒントとなります。さらに、女性対象に情報配信や起業家支援を行う事業でも、企画から実施、告知、集客に至る各段階で役立つと感じました。 集客はどう取り戻す? 近年、SNSの台頭などで仕事の依頼が減少し、売上が低下しているため、改めてフレームワークを活用し、独自のサービスを打ち出す必要性を感じています。そこで、まずスタッフミーティングで集客に関する概要を伝え、各自に「なぜ集客が必要か、どのような手段が考えられるか」を宿題として考えてもらいます。 実践後に何を考える? その後、スタッフ全員で実際のワークを行い、まとめた内容を可視化して、とりあえず実践に移します。実践した後は反省点を振り返り、改善に努める予定です。具体的なテーマとしては、夏休みイベントを取り上げています。

マーケティング入門

訪日観光アプリ成功の鍵を探る

観光案内アプリのセグメンテーションとは? 観光案内アプリの事業化を検討する過程で、特に注意が必要だと感じたのは「セグメンテーションの切り口」です。訪日外国人旅行客を優先すべき顧客層として仮定しましたが、最終的には国内旅行者にも対象を広げたいと考えています。このとき、以下の変数を明らかにし、「購買行動に差が出る切り口を選ぶ」ことが重要だと学びました。 - 人口動態変数(例:年齢や性別) - 地理的変数 - 心理的変数(例:趣味、志向) - 行動変数(例:使用頻度) 6R基準でのターゲティングの重要性 ターゲティングについては、6Rという評価基準を新たに知りました。特に、Rankでは市場規模に加え、イノベーターやアーリーアダプターといった火が付きやすい層を選ぶ必要があると再認識しました。 - Realistic Scale - Rate of Growth - Rival - Rank(優先順位、影響力の強さを考慮) - Reach - Response これらの基準は、市場の魅力と自分たちが勝ち残れるかどうかを比較しつつ選びます。 データを基にしたセグメンテーションプロセス セグメンテーションはデータに基づいて行います。まず、「購買行動に差が出る切り口」を仮説立てし、それに応じてデータを取得します。その後、ターゲティングやポジショニングを以下の手順で進める計画です。 1. セグメント別の市場規模、成長率を推定する 2. 推定結果に優先順位をつける 3. 最も優先する市場について競合との差別化を仮決めする(ポジショニング) 4. 実際に検証する この一連のプロセスによって、より的確で効果的なアプローチが可能になると考えています。

データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

データ・アナリティクス入門

広い視点で仮説を立てるコツ

なぜ複数の仮説が大切? 仮説を立てる際の重要なポイントはいくつかあります。まず、確からしい仮説がある場合でも、それに固執せず、複数の仮説を立てることが大切です。また、異なる観点から仮説を立てることで、見落としを防ぎます。特にフレームワークを活用することによって、網羅的に仮説を立てることが可能です。例として、3Cや4Pのような方法がありますが、分類に自信がなくても、広い視点で考えることが目的ですので心配ありません。 データ収集で何を探す? データ収集においては、比較対象を意図的に選び、反論を排除するための情報まで集めるようにしましょう。仮説を簡単に切り捨てないことがポイントです。 どうして視点を広げる? 売上が低迷している商品のリニューアルや新商品のコンセプト評価が思わしくない場合、特に3Cの観点から原因仮説や戦略仮説を立てることがあります。その際、視点が狭くならないよう、予測可能な答えをいったん頭から離し、第三者の視点で仮説を立ててみることが重要です。また、「顧客」と「競合」といった視点での分類に迷うことがありますが、分類自体に注力する必要はありません。仮説を排除した際の理由をデータで示す必要があるので、安易に仮説を切り捨てないようにしましょう。 フォーマットで何を改善? 仮説立てのフォーマットには、仮説を切り捨てた理由を記載する項目を設けることが有用です。また、「製品」に関しては、3Cだけでなく、「パッケージ」「味」「価格」なども考慮に入れたフォーマットに変えるのが良いでしょう。フレームワークを活用しても、一人では限界があるため、他部署の方々の協力を得ることも効果的です。

マーケティング入門

競合を超える新市場への挑戦と学び

商品に新たな用途を見つけるには? 今週の事例では、既存の商品に新たな用途を見つけることで新しい市場を開拓したことが印象的でした。また、別の事例ではポジショニングの軸を巧みに設定し、新市場を発見したことに学びがありました。これにより、既存の商品でもポジショニング・ターゲティングを変えることで、新たな顧客層や市場に参入できることを理解しました。 自社での新価値創出の難しさとは? しかし、これを自社に置き換えて考えると、他社には真似できない複数の強みから新たな価値を生み出し、新市場に参入することの難しさを実感します。ターゲティングに成功したY社や、手軽に挽きたて珈琲を購入できるポジショニングでヒットしたS社の事例を通じて、ポジショニングとターゲティングの重要性がさらに理解できました。 差別化と新用途のチャンス 多くの競合が存在する中で、自社の商品は異なり差別化はできているものの、その競合と同じポジショニングをとっています。差別化ができているからこそ、新しい用途を生み出し、新しい価値でこれまでにない市場に参入するチャンスがあると感じました。このため、ポジショニングマップと訴求ポイントを深堀し、まずはテスト的に自分の顧客を対象に実践してみたいと思います。 どんなターゲット層を狙うべき? 具体的には、大手コンビニから地域のコンビニ、都市部や田舎のコンビニまで、どのような商品陳列でどのターゲット層を重視しているかを確認する必要があります。そして、自社商品の新たな用途がないか?そのターゲット層に向けたリーチ方法が本当に適切か?を深く議論していきます。

データ・アナリティクス入門

データ分析で未来のトレンドを掴む方法

比較で何が分かる? データ分析は、比較することで初めて意味が生まれます。そのため、分析の目的に応じて適切な比較対象を設定することが重要です。データ分析の目的を明確に整理し、関係者間で共通認識を持つことが大事です。漫然とデータを分析するのではなく、目的達成に必要な事項を洗い出し、仮説を立て、仮説の検証としてデータの収集と加工を行うといった順序に従って進めていくことが望ましいです。 販売動向はどう見る? 具体的には、自社や他社商品の販売動向とその結果の要因分析を行い、次の新商品開発に生かすことが挙げられます。売れている商品の共通点やトレンド、どのような顧客にどのような商品が売れているのかを購買データから分析します。そして、売れない理由についてアンケート調査の結果を分析します。また、売上が低迷している商品のリニューアルに向け、売上低迷の要因を購買者層の変化から分析し、競合品の販売動向や購買者動向の分析、アンケート結果の分析を通じて方向性を示します。 調査結果は効果的? さらに、商品コンセプト調査結果やアンケート調査の効果的な分析により、商品案の軌道修正を行い、説得力を高めることも必要です。 前段階で成功策は? これらのプロセスを進めるにあたっては、アンケート調査票の作成やデータ収集の前に、目的の整理と関係者間での共有を行うことが不可欠です。そのうえで、必要な事項を洗い出し、仮説を整理し、収集したデータの加工の方法までを想定し、全体像をイメージして作業を進めることが大切です。データ収集の前段階を丁寧に行うことが、成功の鍵となります。

マーケティング入門

多角視点で開く学びの扉

マーケはどう捉える? マーケティングの定義は人それぞれの捉え方があり、どの考え方も広い意味でのマーケティングに含まれることを学びました。思考や仕組み、プロセス全体が一体となっているということを再認識し、異なる視点が必ずしも間違いではないという気づきも得ました。自分の商品だけでなく、顧客にその魅力を伝えるサイクルを確立し、最終的に顧客に選ばれる重要性を強く感じました。自分自身、もっと執念深く取り組む必要があると実感しています。 ブランドはなぜ必要? 現在の業務は技術を起点としたプロダクトづくりが中心ですが、顧客にそのプロダクトの魅力をしっかりと伝えるためには、ブランドづくりが不可欠だと考えています。魅力を感じてもらえるターゲットが存在するのか、販売の仕組みが適切かどうかを継続的に分析していくことが必要です。常に自分の考えが正しいか、適切かを問い直す姿勢が求められており、顧客のニーズに合致するかを判断するためのマーケティング的視点の習得と活用が今後の課題だと感じています。 顧客理解はどう進む? まずは、顧客が本当に求めるものを理解し、顧客の思考や行動を分析することから始めたいと考えています。コアファンの探索を通じて、その行動原理や商品の用途を再確認し、ユーザーストーリーマップを作成する予定です。また、顧客インタビューに際しては、対象者にブレがないか、質問内容が適切かどうかを十分に検討した上で実施します。仮説検証の際にも、一方的な判断に偏らないよう論点を整理し、ビジネスの勝ち筋を見出す努力を続けたいと思います。

データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

「顧客 × 対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right