マーケティング入門

仮説と実践を学び自己成長へ

マーケティングの基本概念を知る マーケティングとは、広告宣伝や販売促進といった具体的な行動のアウトプットに留まらない、より広い概念です。社会全体にとって価値のある提供物を、「創造」「伝達」「配達」「交換」する活動やプロセスを指します。販売の必要性をなくし、顧客が自然に買いたいと思う仕組みを作ること、これが「顧客志向」です。マーケティングの視点では、製品主体のセリングとは異なり、顧客ニーズを始点に顧客満足をゴールとしています。 顧客に魅力を伝える方法は? 自己の商品や自分自身の魅力を顧客にきちんと伝え、相手が自社の商品に魅力を感じることが重要です。ヒット商品にも注目し、その裏側にある成功要因を学ぶことが大切です。 仮説を立てる重要性を学ぶ 今週の学びを通して感じたことが二つあります。一つ目は「仮説を立てること」です。LIVE授業で「仮説を立てる」という話がありましたが、マーケティングの実践では、初めに正しい理論や数字を元にした仮説を立て、その仮説をしっかりと言語化することが大切だと感じました。 PDCAサイクルをどう活用する? 二つ目は「実践すること」、そして「組織で実践すること」です。これもLIVE授業で触れられた内容ですが、ただ仕組みを作るだけでなく、PDCAサイクルを回して精度やスピードを上げることが重要であると再確認しました。 営業活動にどう反映する? 営業活動では、営業戦略の策定や広告宣伝・販売促進を考える際に活用できます。また、バックオフィスの領域でも、顧客や他部署に業務提案する際に役立ちます。マーケティングに基づき、裏付けされた内容でPDCAを回し、限られたリソースを最適に活用し、結果に結びつけることが求められます。上司や同僚、部下に伝えることも重要です。 学んだ知識を如何に活かすか? このナノ単科を主体的に受講し、学んだ知識を仕事に取り入れて実践することで、自己成長につなげていきたいと考えています。

クリティカルシンキング入門

データで発見!POS活用の新視点

グラフ化はどう効果的? 数字をグラフ化することによって、新たな発見が得られることがあります。また、比率の計算を通じて、全体に占める割合を分かりやすく理解できます。これまであまりグラフ化を行ってこなかったので、これからは積極的に取り組んでいきたいと思います。反対に、「データを加工しないままだと、重要な点を見落とす可能性がある」ということも意識して注意を払いたいと思っています。 分解方法をどう見直す? データの分解の仕方についても、自分が考えていたもの以外にさまざまなアプローチがあることに気づかされました。「データの分け方を工夫する」という段では、二つの分け方から「大学生に集中している」という点を見落としていました。無意識のうちに「同じ年数の幅で比較する」という方法に固執していたようです。また、「分解をする際の留意点を知る」では、解釈の仕方の誤りに気がつきました。一度解釈をした後でも、もう一度立ち止まって「本当にそうか?」と再考する必要性を改めて認識しました。 分解の意義は何? 講義を通じて、「分解してみても何も見えてこないことは失敗ではない」「迷ったときはまず分解を試みる」「分けていくことが理解を深めるための手段」であるという、データを分解して解釈する際のポイントを学ぶことができました。 POSデータの活用は? 私が従事している小売業においては、業務で頻繁にPOSデータを扱います。顧客の動向を把握するために非常に有効なので、POSデータを分析するときにはこの学びを実践していきたいです。特に、グラフ化を意識して視覚的に理解することに重点を置いています。 グラフ化の効果は? 具体的には、POSデータを週ごとにExcelで表にして、グラフ化を通じて視覚的に把握します。そこから見えてきた変化をもとに、今後の方向性を決定し、業務に生かしていきます。毎週さまざまな切り口を試し、効果的な加工の方法を探っていく予定です。

クリティカルシンキング入門

データの切り口を見直して発見した新たな視点

切り口を考える意義とは? 分解する前に切り口を考えることの重要性を再認識しました。切り口を考える際には、仮説を持って臨むことが大切だということを学びました。 データ分析に仮説は必要? 今回の講義の演習には、「切り口を考える」場面が多く含まれていました。これはデータ分析を行う際、多様な視点が必要であることを示しています。そして、「切り口を考える」ためには、現時点での仮説を持つことが重要だと感じました。過去にデータを分析しようとした経験があり、当初はデータの傾向を捉えようとしていましたが、進捗が思わしくありませんでした。しかし、過去の経験から推測を立て、それに基づいてデータを精査すると傾向が見えてきました。この経験は、今回学んだ内容そのものであると改めて感じました。 正誤判断で新たな発見を? 仮説を持ち、切り口を考えてデータを見ることで、自分の仮説の正誤を判断するだけでなく、仮説が誤っていた場合でも、その仮説と実際の結果を比較検討できます。これにより、新たな解釈や仮説が生まれ、データに対する理解が深まるのです。 業務への具体的な応用は? このアプローチは、ソフトウェアの期限切れ対応のコスト分析や障害発生時のデータ分析など、直接的な業務にも応用できます。また、プロジェクト立ち上げ時には、コスト評価や対応内容の妥当性を説明する資料の作成が必要ですが、その際には票だけでなくグラフも加えて分かりやすくしたいと考えています。 仮説を立てることの効果とは? これまで、コスト分析というと、ただ数字をマトリックスやグラフにまとめるだけでしたが、それは単なる事実の整理に過ぎませんでした。今後はデータを整理・解析する前に目的を明確にし、その目的と過去の経験から仮説を立て、その仮説に応じた切り口でデータを整理していきたいと考えています。これにより、わかりやすい資料作成だけでなく、コストダウンの端緒を見つけることができるかもしれません。

クリティカルシンキング入門

データで見つける思考の新発見

データ分解で何が見える? 与えられたデータをどのように分解するかによって、見えてくるものが大きく変わることを体感しました。また、グラフに可視化することで、数字だけでは見えない傾向が明確に浮き彫りになることも理解できました。 思考癖に気づく理由は? データを要素別に分解した際、関連しそうなものを安易に結びつけて一つの傾向として捉えてしまう自分の思考の癖に気づきました。本当にその傾向が正しいのかを確認せず、安直に結論を出して解決策を立てるのではなく、その仮説をもとにさらに分解し、複数の切り口から丁寧に検討することが必要だと感じました。具体的には、「who」「when」「where」「how」といった視点から考えることを学びました。 ターゲット分析はどう進む? また、あるホテルでの活動において、ゲストが楽しみながら地球環境や社会に貢献できるようなサービスを考案する際には、ターゲットを定めるだけでなく、既存の客を分析するために今回学んだ切り口が役立つと感じました。例えば、「who」年代別、属性、「where」出身国、「what」目的、「when」時間帯、「why」選択理由、「how」交通手段や情報源などです。 サービス評価のタイミングは? さらに、カスタマーサービスを分析する際にはプロセスの分解を行い、滞在のどのタイミングで満足度が高いのか、また低いのかを理解し、サービス改善に努めたいと思いました。 根拠をもとに提案は? このような視点から考慮することで、事象の解像度が上がり、思いつきでなく根拠をもとにアイディアを提案できると感じます。日々の業務でアイディアを提案する際には、データをどのように分解して仮説を立てたかを説明することが重要だと思いました。また、「事象分解」「変数分解」「プロセス分解」のいずれかの方法が適しているのか、また切り口を5W1Hから考慮するなど、丁寧に思考する癖をつけることが大切だと考えます。

データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

戦略思考入門

未来を描く戦略的思考、始めよう

戦略的思考で達成するには? 戦略的思考とは、目指すべき適切なゴールを定め、現在地からゴールまでの道のりを描き、可能な限り最速・最短距離で到達するプロセスです。これを実践するためには、目的から逆算してプロセスを設計し、本質的な課題や論点を設定することが重要です。さらに、長期的視点を持ち、論理的に物事を考え、時流を予測して他者に納得のいく説明を行う能力が求められます。また、実用的なプランを作成し実行に移す力、そして優先順位を判断し成功確率を高める力も重要です。 事業計画を立てるステップは? 自身の業務については、まず事業規模の計画を立てることが求められます。次年度の目標数字を設定し、それに基づく具体的なアクションを計画します。また、3カ年プランを策定し、あるべき姿を描き、それに必要な手段を逆算して考えます。自社が目指すべき理想像を明確にし、ギャップを特定した上で重点項目をいくつか特定し、具体的なアクション計画を作成します。場当たり的にならないように、周囲を巻き込みつつ計画を進めます。 個社別アプローチで成果を上げるには? 個社別企業へのアプローチにおいては、あるべき姿と現状とのギャップを特定し、必要なアクションを明確化します。この際、成功と失敗の事例を整理し、次回に活かすための改善策を講じる時間を設けます。具体的な指標を用いて優先事項を設定し、最短で目標に到達するためのプロセスを描くことが求められます。 キャリア形成の戦略的アプローチとは? 自身のキャリアを形成する上で、自分の将来像を明確に設定し、それに向けたギャップを抽出します。特にスキルやマインドセット、住居や家族といった要素について考慮し、重要な部分を見極めることが必要です。家族と同意の上で具体的なアクションステップを計画し、業務の整理とコミットメントを行います。このようなプロセスを通じて、個人のキャリア形成においても戦略的思考を活用していきます。

データ・アナリティクス入門

仮説思考で未来を拓く!

仮説のメリットは何ですか? 「仮説」とは、ある論点に対する仮の答えのことです。この仮説を用いることで、説得力の向上、問題意識の高まり、スピードアップ、行動の精度向上といったメリットがあります。仮説は目的に応じて分類され、さらに時間の経過を考慮して整理されます。例えば、過去の問題を解決する方法として仮説を立てることができます。 正しい仮説の見方は? 仮説を立てる際は、目の前の数字だけにとらわれずに俯瞰してみることが重要です。複数の仮説を決め打ちせずに立て、網羅性を持たせるためにさまざまな切り口を考慮します。また、都合のよいデータだけに頼らず、反論を排除するまでの検証が求められます。 仮説技法のコツは? 仮説を立てるテクニックとして、「なぜ」を繰り返して知識を広めたり、別の視点や時系列で考えることが挙げられます。また、ラフな仮説を作る際には、常識を疑い、新しい情報と組み合わせ、発想を止めないことが大切です。 リーダーはどう実践すべき? リーダーの役割として、仮説を検証するプロセスを習慣化するためには、率先垂範し、仮説と検証方法を常に考えることが重要です。また、質問を使ってコーチングを行い、チーム内での役割分担によるブレインストーミングやディスカッションを推進します。 新仮説はどう生まれる? 創造的な仮説を考えるためには、ビジネス内外の組み合わせや否定的な問いを投げかけると良いでしょう。そして、仮説、データ分析、検証方法をセットで考え、それをチームで共有することが求められます。 どう自己を再確認? 最後に、パッションを高めるための自問を言語化し、自分の生きがいやパフォーマンスを再確認することも重要です。これには、自分の目標を再確認し、現在の状況に対する考えを深めることが含まれます。こうしたプロセスを通じて、自身の成長とチームの成功を目指します。

リーダーシップ・キャリアビジョン入門

言葉が拓くリーダーの道

どう評価伝える? 部下がいないため、これまで評価を伝える経験や伝えられる経験がありませんでした。特に、どのタイミングで結論を伝えるかという点が難しく感じられました。最初に結論を述べる方法と最後に述べる方法にはそれぞれメリットとデメリットがあり、キャリアアンカーで学んだように、受け手の価値観を十分に理解した上で伝える順序を決めることが重要だと結論付けました。 どうして具体化できた? ありたい姿に関しては、大きな変化はありませんでしたが、これまでの学びでより具体的なイメージができるようになりました。たとえば、私自身が「信頼・挑戦・感謝」を行動指針として掲げている中で、感謝の意味を単なる言葉としてだけでなく、「当事者意識」や「適切な言葉選び」といった具体的な行動に落とし込む意識が芽生えました。特に振り返りの機会に、言葉選びの重要性に改めて気づくことができました。 リーダー像はどう見える? リーダーとしての全体像を考えるうえで、パス・ゴール理論が非常に腑に落ちました。これにより、何をすべきかが明確になり、基本を押さえながらも独自の視点を取り入れていく意欲が湧いてきました。 どう背景を探る? クライアントとの1on1では、進捗管理だけでなく、その背景や理由についても質問するよう心がけています。数字だけで評価するのではなく、その裏にある要素を引き出し、より深い理解に繋げたいと考えています。行動指針を具体的に意識することで、自分の行動が常にその指針と照らし合わせながら進むように努めています。 どうして仮説組む? 質問する際は、ただ問いかけるのではなく、仮説を持ったうえで行うことが重要です。まずは当事者意識をもって仮説を立て、その仮説に基づいて相手の立場や状況を考えながら会話を進めるよう、日々意識していきます。質問力と傾聴力をさらに磨くため、今後も努力していきたいと考えています。

アカウンティング入門

数字が導く学びの冒険

売上原価の謎は? オリエンタルランドをモデルケースとして、B/SやP/Lの読み解きを学んだ内容は非常に興味深いものでした。キャストが売上原価に組み込まれており、その対応のすばらしさが売上に直結する事業であることから、研修など人材育成に多くの費用がかけられているという仮説を立てることができました。また、売上原価にロイヤルティが含まれている点については、ウォルトディズニー社との契約内容にも思いを馳せることになり、日曜日の振り返りの際に話題となりました。 現金留保の行方は? 震災後、流動資産としての現金留保に経営方針が変わったという点も印象的でしたが、実際にどのように現金を活用しているのか知りたくなりました。また、グループディスカッションでは、オフィシャルスポンサーへの経費負担という話が出た中で、先生からアトラクション施設工事費をスポンサーに負担してもらう新たなビジネスモデルについて学ぶことができました。 どの点が響いた? さらに、以下の2点が特に印象に残りました。まず、ちょうど4月の月次が発表されたタイミングで、B/SとP/Lがどのように連動しているのかを確認できたこと。次に、オリエンタルランドと同様に、保育業界でも現場の人件費が売上原価に組み込まれていて、その業界特有のP/LとB/Sの特徴がどのようなものかを探求したいという意欲が湧いたことです。 学びの効果は? 今回の学びを通して、財務三表が以前に比べて身近に感じられるようになりました。わずか6週間で大きな変化があったと実感し、グループディスカッションやグループワークに参加したことで、自分一人では考えつかなかった視点やアプローチに触れることができ、とても有意義な時間でした。仕事では味わえない満足感を得るとともに、学ぶ習慣が蘇り、今後も継続して知識を蓄積し、新たな引き出しを作りながら社会に少しでも貢献できればと感じています。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

クリティカルシンキング入門

データ分析の新発見と発想転換の旅

データ分析の工夫は? 今週の講義では、多くの気づきがありました。まず、データ分析においては、単にデータを眺めるだけでなく、少し手を加えることが重要だということです。具体的には、販売戸数と単価の組み合わせで売上を構成する新しい項目を作成したり、数字を視覚化するためにグラフを使ったりすることです。これまでの自分には、そうした手間をかける習慣がなかったことに気づかされました。 分割方法はどうかな? データの分割方法についても新たな視点を得ました。従来は年齢別に10歳ごとで分けていましたが、大学生に焦点を当てた18歳~22歳の分割や、4歳ごとの分割法を知り、新鮮な驚きがありました。こうした視点の転換は、日常業務にも活かせると感じました。 分解の効果は? 博物館での演習を通じて、分解を重ねることで新たな洞察が得られることがわかりました。ただ満足するだけでなく、さらなる分解が重要だと認識しました。講師からも、迷ったらとにかく分けてみること、特徴的な結果が出なければそれは次のステップだという考え方を学び、大変共感しました。 MECEは本当に有効? 最後に、MECE(漏れなくダブりなく)の考え方について学びました。今後、業務で悩んだ際には、この考え方を基に問題を整理していきたいです。 来店客の傾向は? 店舗に来店するお客様を分析することで、今後の店舗運営に役立つアイデアが出てきそうです。現在、来客数が減少している問題があり、分析を通じてその原因を探ることが必要です。スタッフの協力を得ながら、効果的な施策を考えていこうと思います。 学びの実践方法は? 今回学んだ手法は、①手を動かす、②機械的に分けない、③複数の切り口を試す、④悩むくらいなら分ける、⑤失敗は次のステップ、⑥分けることで分かる、というステップで進めていくことが重要だと実感しました。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

「自分 × 数字」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right