データ・アナリティクス入門

代表値で読み解くデータのヒント

原因の絞り方は? 原因を探る際は、初めから抽象的で幅広い視点に陥らないよう注意が必要です。たとえば、複数の商品がある場合、どのカテゴリに低下傾向があるかという結論のイメージをあらかじめ明確にしておくことが重要です。 代表値の違いは? 次に、代表値の使い分けについて学びました。全体の傾向を把握するためには平均値が有効ですが、極端な値の影響を排除する場合は中央値が適しています。そして、一番多いパターンを知るためには最頻値を用いると良いでしょう。平均値だけでは見えない問題を把握するために、ばらつきや元データの傾向も確認することが求められます。 グラフはどう使う? また、グラフの使い分けが印象に残りました。数量の比較には棒グラフ、構成比を確認する際には円グラフが効果的です。データの可視化を行うことで、変化や傾向が一目で理解できるようになります。 率と実数の意味は? さらに、率と実数の両方を見る姿勢の大切さも学びました。率だけでは、実際の数が少なすぎる場合に意味が薄れる可能性があるため、実数と併せて確認する必要があります。逆に、率でも実数でも共に減少している場合は、本当に問題があると判断すべきです。特に回収数が一定でないアンケート調査では、基本的に割合での比較が推奨されます。 障害分析の見方は? 障害分析においては、障害対応時間(MTTR)の検証が具体例として有効です。極端な値に影響されない実態把握のためには平均値だけでなく、中央値の確認も欠かせません。さらに、最頻値を合わせて見ることで、改善すべき典型的なケースを特定することが可能です。 エラー分析はどう? エラー分析においては、エラー率と実数の両面から検討することが重要です。たとえば、ある機能でエラー率が高くても利用者数が少なければ意味が薄れますし、逆にエラー率が低くても多数の利用者に影響している場合は大きな問題と言えます。 具体的な行動は? 具体的な行動としては、障害レポートのテンプレートに「平均値」「中央値」「最頻値」の項目を追加し、代表値の使い分けを習慣化することが推奨されます。また、エラー率を報告する際には、必ず実数も併記するルールをチーム内で提案するよう心がけると良いでしょう。

データ・アナリティクス入門

なぜ?が未来を変える学び

なぜ問題は起こる? まず、問題が発生した際にすぐ解決策(HOW)を考えるのではなく、「なぜこの問題が起きたのか(WHY)」に立ち返る姿勢が大切だと学びました。たとえば、ある教育機関のケースでは、一見複数の悪い数字が散見されたものの、詳しく分解すると根本原因が一つに絞れるという発見がありました。表面的な現象だけでは的確な対策が打てないため、まず原因の深掘りが必要だと痛感しました。 ロジックで整理? また、ロジックツリーやMECEといったフレームワークを活用することで、論点整理に漏れや重複がなくなり、複雑な課題もシンプルな要素に整理できる点が印象的でした。これにより、解決すべき具体的な課題が明確になり、自分がリソースを注ぐべき事柄に優先順位を付けやすくなります。 既存施策の強みは? さらに、課題を因数分解することで、単に解決すべき問題だけでなく、既存の施策から成果が出ている部分を見出すこともできると感じました。これは、改善活動のみならず、自分たちの強みを再確認する良い機会となります。加えて、自らの打ち手がどの部分にどのように影響を及ぼすかを理解することで、効果測定が容易になり、施策の評価や次のアクションの決定に大いに役立つと実感しました。 業務標準化の秘訣は? 来季、部署内で進める「各拠点の業務標準化」においては、まず運用の差異がなぜ生じるのかを徹底的に分析し、表面的な違いではなく根本的な要因(たとえばシステム設定やスタッフ教育、地域ごとの慣行など)を明確にすることがポイントです。さらに、標準化が進まない理由を大項目、中項目、小項目という階層構造で整理し、プロセス、人材、システム、ガバナンスといった視点から抜け漏れなく検討することで、優先的に取り組むべき課題が見える化されます。また、標準業務の順守率やエラー率など、具体的な効果指標を設定することで、改善のインパクトを把握しやすくなると考えています。 優先順位は何故? 実践の際は、課題の重要度や緊急度だけでなく、実現のしやすさという観点も加えて優先順位を決めることが不可欠です。現場で課題に取り組む際、皆さんはどのような基準やプロセスを用いているでしょうか。ぜひ、具体的な事例や経験をもとに意見を共有していただければと思います。

戦略思考入門

差別化戦略で勝ち抜く方法を学ぶ

ターゲットは何を見直す? 今回の学習を通じて、差別化について理解を深めました。差別化の戦略を立てる上で最も重要なことは、「ターゲットの明確化」であることがわかりました。 顧客視点で何を考える? まず、顧客にとって価値ある内容であるかどうかを考えることが重要です。そして、自社の業界だけに縛られず、顧客の視点から競合を考慮する必要があります。また、実現可能性や持続可能性についても検討が求められます。 競争の中でどう優位に立つ? 市場には必ず競合が存在し、争いは避けられません。体力勝負では効率が悪く、強者しか生き残れないことが前提です。そこで差別化を図ることにより、他社との違いを生み出し、自社の強みを活かして有利に戦い続ける可能性が高まります。 分析のポイントはどこか? 差別化のポイントとしては、情報や状況を整理し、不足のないように分析することが挙げられます。その際、フレームワークを活用して各種要素を整理することが推奨されます。 顧客需要はどう把握する? また、差別化を考案する際には、想定する顧客の需要を理解することが重要です。顧客像が明確でなければ、多様な意見に流され、決定的な戦略を欠いてしまいます。ターゲットを決定した後、競合を設定する際には自社の業界内だけでなく、広い視野で他業界も考慮することが重要です。このようにして、顧客視点でどの業界が競合になるのかを見極めることが求められます。 実現可能性はどう検証する? その上で、提案した施策が実現可能であり、持続可能かどうかも重要なポイントになります。特に、投資を継続できる内容であるかを考える必要があります。 強みにどう取り組む? 私は、今回の学びを活かして、まずはVRIO分析を活用し、自分の職場の強みを明確にしたいと考えています。具体的な強みを見出し、自分自身がどの方向に力を入れるべきかを見定め、職場内で意見を共有し、戦略を立てることに繋げたいと思います。 どのような訓練が必要? また、個人レベルでの考える訓練を続け、学んだフレームワークに慣れることを目指します。VRIO分析を通じて職場を分析しつつ、施策や行動計画を描く際に差別化のポイントを意識し、自分の中で確実に定着させるよう努めたいと思います。

アカウンティング入門

B/Sで読み解く企業の秘密

B/Sの違いをどう見る? B/Sについては、これまで業務の中で目にする機会が少なかったため、活用するチャンスがなかったが、今回のゲイルや総合演習を通して、PLとの関連性と役割の違いを認識し、企業を多角的に見るツールであることを実感することができた。特に、インフラ産業とクラウドビジネスのB/Sを比較する中で、インフラ産業は車両や駅舎、電線設備などの有形固定資産を多く保有(70%以上の割合)し、成熟した産業であるため負債が大きくなりがちである一方、クラウドビジネスは店舗や設備を必要としないため有形固定資産が少なく、新興の産業故に負債を抑え、純資産が大きい傾向があるという違いが明確に理解できた。 負債運用の意味は? また、アキコの事例を用いたゲイルでは、「負債」の考え方について学ぶことができた。負債を極力抑える運用の重要性と、成長のチャンスを逃さないために時には必要な負債が発生するという現実も示され、安定した企業は負債が大きくなりやすい一方、個人で事業を展開する場合は負債を小さくしておくのが望ましいという点を考えさせられた。B/Sは、お金の「調達」と「使途」のバランスを把握できる資料として、企業の成り立ちそのものを理解する上で非常に有用であると感じた。 自社B/Sの現状は? まずは、自身の会社のB/Sを確認し、分析を行うことが必要だ。現状を正しく把握し、運営上の数値管理のために何を追うべきか、またどの点に注力するかといった運営上の課題を明確にすることに役立てたい。同時に、他社のB/Sを読むことで成り立ちの違いを理解し、自社の今後の戦略について考える材料にしたい。 業界分析はどう進む? さらに、薬局業界で公表されているB/Sを確認し、流動資産、固定資産(有形固定資産、無形固定資産)、流動負債、固定負債の各項目とその組成について把握する。そして、自社のB/Sを見直し、企業の成り立ちや現状を正確に把握することが求められる。現在、5月に実施予定の管理者向け研修資料作成にあたり、財務三表について分かりやすく噛み砕き、自社の状況と外部環境を具体的に受講者に説明できるよう、PLやB/Sを再度読み直し、情報の整理を進めていく。こうした人に教えるプロセスを通じて、知識の定着を図っていきたい。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

リーダーシップ・キャリアビジョン入門

状況に合わせる新リーダーの道

リーダーシップの違いは何? 最近の学習で、マネージャーに必要な要素として「リーダーシップ」と「マネジメント」の違いについて学びました。リーダーシップは人を動かす行動であり、マネジメントは人を管理することだと整理でき、状況や目的に応じた使い分けが求められると理解しました。 理論の変遷をどう感じる? また、リーダーシップ理論の変遷を通じて、最初の特性理論から行動理論を経て、現在は条件適合理論に基づく考え方が主流であることを学びました。強いリーダーが必ずしも最適とは限らず、変化する状況に応じた適切なリーダーシップを発揮することが大切だと感じました。 パス・ゴール理論は何? 条件適合理論の一環として紹介されたパス・ゴール理論では、部下が目標に向かって進む中で、彼らの環境や適合の要素を把握し、適切な「パス」を示すリーダーの行動が求められると知りました。指示型、参加型、支援型、達成志向型という4タイプがあるものの、各タイプに固執せず、状況全体を見極めた上で効果的なアプローチをとることが重要と理解しました。 実践の壁はどう克服する? 実際に学ぶ中で、パス・ゴール理論を実践する難しさや、自分自身がその実践に挑む際のハードルの高さも感じました。今後、部下やメンバーに何らかの働きかけを行う際には、彼らの状況をさまざまな角度から観察し、どの行動が最も効果的かを考えた上で取り組みたいと思います。 チームの調和はどう築く? チーム全体で同じゴールを目指す中でも、メンバーそれぞれの背景や経験は異なるため、状況に応じた柔軟な対応が必要です。目標達成のために全員が納得して前向きに取り組めるよう、チーム全体に方針を明確に伝えるとともに、進捗管理はしっかり行いながら、各自のやり方を尊重する姿勢を持っています。 コミュニケーションは十分? 普段から、必要な時に相手に合わせたコミュニケーションを心がけてはいるものの、4タイプの行動を意識するまでには至っていないと感じています。今後は、個々の環境や適合の視点から状況を把握し、必要なときに効果的な行動を起こせるよう準備し、固定観念にとらわれず客観的な視点で部下やメンバーと向き合いたいと考えています。

アカウンティング入門

オリエンタルランドで探る決算の秘密

オリエンタルランドの視点は? 今回、オリエンタルランドを題材に、P/L(損益計算書)とB/S(貸借対照表)を読み解くワークに取り組みました。まず、事業活動を考える際に、①顧客や企業、②提供価値、③価値提供のための活動、④経営資源といった要素を仮定し、それに基づいてP/Lの売上や売上原価、B/Sの資産を具体的に整理しました。このフレームワークは非常に分かりやすく、今後も活用していきたいと感じました。 売上はどう計上される? 売上については、想定通りアトラクションやショー、商品販売などの順で計上されていました。しかし、オリエンタルランドの事業セクションが分かれているため、どこまでを同社の売上として扱うかという点は検討の余地があると感じました。一方、売上原価に関しては、商品原価は想定どおりでしたが、同社の場合は人件費、減価償却費、施設更新関連費、ロイヤリティなども計上されていることに驚きました。一般企業では、人件費は販管費に計上されるため、この違いが印象的でした。 人件費の扱いはどう変わる? また、人件費の扱いに関して調べると、売上原価の製造費と販管費における販売費、一般管理費、研究開発費で分類されるのが一般的であることが分かりました。こうした知識を通して、財務3表の見方が変わり、各項目がどのような経営判断につながるかを考える良い機会となりました。 業界応用はどう考える? さらに、フレームワークを他の業界に応用する際には、顧客の特性や利用シーンなど具体的な側面に注目する必要があると感じました。売上原価と販管費の違いが粗利や営業利益にどのように影響を及ぼすかを理解することで、経営判断におけるコスト構造の分析にもつながると考えています。 実践での説明はどう進む? 今後は、この知識をもとに、実際の面談や決算報告の際に、事業活動とP/L、B/Sとの関連性を具体的に説明できるよう努めたいと思います。また、業界や同規模の企業との比較分析を通じて、より深い理解を得ることを目指しています。仕事以外では、複数の決算報告書を題材に事業活動を整理し、自分なりにP/LやB/Sを読み解く練習を続け、実際のお客様への説明機会も活用して理解をさらに深めていきたいと考えています。

アカウンティング入門

B/Sで読み解く企業の健康診断

B/Sってどう読もう? まず、B/S(バランスシート)の基本的な読み解き方について学びました。左側に資産が、右側に負債と純資産が記載され、流動性の高い項目から順に並んでいることから、B/Sは企業のお金の使い道と調達方法、そして健康状態を確認するための重要な表であると理解しました。 収益差をどう捉える? また、ある鉄道事業と、ゲームソフトを主たる事業とする収益体質の比較を通して、固定資産の多さと収益構造の違いを検討しました。一概にどちらが優れているとは言えないものの、純資産が多く借入が少ない側は、事業の機動性が高いと感じました。 カフェ事例で学べる? ケーススタディでは、あるカフェの事例を用いて、B/Sの読み方をより実践的に学びました。そのカフェでは、自己資金に援助金を加えることで純資産を増やし、さらに銀行からの3年の長期借入れを固定負債として計上する手法が紹介されました。加えて、コンセプトに沿った土地や建物、内外装工事、調理器具、インフラ権利なども資産に含める点に気づかされました。 資金調達のリスクは? また、計画通りに資金を調達できなかった場合のリスクについても検討し、資金調達が不十分なことでコンセプトの変更や事業への影響が生じ、最終的には倒産リスクにつながる可能性があることを認識しました。もしコンセプト通りに事業が進められないのであれば、事業計画の再立案が必要になり、その結果、事業開始が遅れるリスクもあるという理解が深まりました。 投資と原価、何を感じ? さらに、投資や固定資産管理、原価の償却費の影響は日常業務で頻繁に関わるため、学んだことを活かして自分なりに投資が事業に与える影響を仮説立てしながら実務に落とし込みたいと考えています。一方で、資金調達については機会が少ないため、B/Sを確認する際に純資産や長期借入金に注目し、仮説を構築する習慣を身につけたいと思います。 前回と今回はどう結ぶ? 最後に、前回のP/L学習と今回のB/S学習を通して、自社や日々の業務における具体的な課題が見つかっているかどうかをメンバーに問いかけ、成功事例や具体的な取り組みについて意見交換を進めていくことも大切だと感じています。

アカウンティング入門

数字の裏側を読み解く学び

本業と全体はどう? PLには売上総利益、営業利益、経常利益といった項目があり、営業利益は本業で得られる利益を示す一方で、企業全体の収益性の判断には限界があることが理解できました。経常利益を見ることで、初めて企業全体の儲けを把握できるという点も納得できました。 PLから何が分かる? また、PL単体では細かい財務活動まで把握することは難しいものの、利益の出し方やコストが発生する時点、そして過去と比較して各割合がどのように変動しているかなど、全体的な売上・利益構造を大まかに捉えるための有用な指標であると感じました。たとえば、対照的なコンセプトを採用するカフェのPLを通して、弱みを他の部分の費用で補うという戦略があることを学びました。店舗が小さく、立地条件が厳しい場合、集客力を補うために広告宣伝費を多く割り当てる戦略が取られているという点は興味深かったです。ただし、PLだけではその背景にある出店経緯や戦略は把握できないため、併せて確認する必要があると感じました。 報告書はどう読む? 自社の利益報告書を読む際は、月単位や年単位での推移を丁寧に把握し、売上や利益の構造に変化がないか、儲けが増加しているのか減少しているのか、要因を明確にすることが大切だと考えています。 各店舗を比べる? さらに、業界の特性から、売上原価の比重が高い店舗と低い店舗が存在するため、各店舗の利益の出し方の違いを比較し、より効果的な利益向上策を模索する意欲が湧きました。自社内の各店舗のPLを詳細に比較することで、利益構造やコンセプトの違いが明確になり、そこから自社分析を経たうえで競合他社のPLも確認し、販管費や労務費、売上原価の占める割合の違いから、何を強みとして成長させ、どこに改善の余地があるかを検討することが求められると感じました。 改善提案は何? こうした分析を通じて、売上に対する各費目の割合や変化を正確に把握し、改善活動を次期の部門方針に反映させるとともに、管理側と店舗それぞれが取り組むべき課題を明確にする必要があると実感しました。自身の責任範囲内で具体的な改善提案を上司に示し、統括する店舗が改善活動に向けた大きな予算を確保できるよう検討していきたいと考えています。

アカウンティング入門

数字で語る共通のストーリー

数字の意味は? アカウンティングとは、単に数字を整理・計算するだけでなく、数字を用いて物事を説明し、意思決定に結びつける行為であると理解しました。数字の整理で終わらず、「なぜこの数字になっているのか」や「次に何をすべきか」を言語化する点が重要であると感じました。 数字は説得の鍵? また、数字は感情や立場から切り離された客観的な共通言語となり得るという点にも大きな学びがありました。「個人的にはこう思う」ではなく、「数字がこう示しているから、この判断を下す」という説明ができることで、普段は言いにくい提案や課題提起も、建設的に伝える武器になると実感しています。 どうやってすり合わせ? 特に、経営層とのコミュニケーションや予算策定の場面でこの考え方を活用していきたいと思います。実務では、より高い利益を追求する経営陣と、現実的な制約の中で目標を引き上げようとする現場との間で認識のズレが生じることがあります。そのような状況においても、感覚や立場の違いに左右されず、数字を共通の言語として利用することで、建設的な話し合いが促進されると感じています。 改善点はどこ? 現場の実情に基づいた積み上げをもとに、トップラインの構造やアップサイド・ダウンサイドの要因を数字に紐づけて整理することで、どこに改善の余地があるのかを明確にしていきたいと考えます。経営層と同じ目線で説明できるようになることで、認識のすり合わせや共通の語彙が進み、より前向きな議論につながると思います。 因数分解はどう使う? また、因数分解を用いて単価や件数を積み上げる重要性を改めて確認しました。一方、将来の見通しを立てる際は、どうしても運や外部環境の影響が大きく、数字だけでは表しきれない部分が存在することにも気付きました。過去の実績や傾向、知見を基に見通しを描くことは可能ですが、環境変化や予想外の要素をどの程度織り込むか、また不確定要素をどのように扱うかは大きな課題と感じています。 不確実性はどうする? このような不確実性の高い状況において、どの部分を数字で示し、どの部分を前提やリスクとして共有するのか、実務の中でどのように工夫されているのか、ぜひ皆さんの意見を伺いたいと思います。

データ・アナリティクス入門

平均だけじゃ見えない真実

単純平均の落とし穴は? 単純平均は、ばらつきを見えにくくし、また外れ値により大きく値がぶれる可能性があります。そのため、何が適切な代表値であるかを十分に考慮した上で、比較や分析に臨むことが大切です。 標準偏差で何が分かる? 標準偏差に関しては、波の大小をイメージすることで、そこから導き出せる情報がわかりやすくなります。これにより、平均だけでは捉えきれないデータの分布の実態を理解しやすくなります。 年齢層の違いを把握するには? 具体的なデータセットを例に挙げると、例えば、ある組織の従業員の平均年齢が38歳の場合、全体は大まかに新卒5年未満、30代後半~40代初頭、60歳前後という3グループに分けることができます。単純な平均値だけではこれらの年齢層のばらつきを正確に反映できませんが、標準偏差を合わせて求めることで、年齢層の多様性をより具体的に把握し、組織の魅力としてアピールする材料とすることが可能です。 外れ値の影響は? また、外れ値がビジネス上の意思決定にどのように影響を与えるかという視点も重要です。たとえば、顧客ごとの売上金額を分析する際、1%程度の大口顧客の存在が全体の平均を引き上げてしまうと、実際の単価水準が正しく把握できなくなります。単純平均のみを頼りにすると、実態との差を見誤り、競合との比較でも課題が見えづらく、適切な方策に結び付けることが難しくなります。 多角的分析は有効? このような背景から、単に平均を算出するだけでなく、加重平均や中央値、そして標準偏差を併用することで、データのばらつきを把握し、その意味するところを考察する姿勢が重要だと改めて感じました。年度末のまとめや次年度への申し送りの際にも、前年や前々年との比較を行い、伸び率や減少率を幾何平均で求めるなど、より多角的な視点でデータを分析することが求められます。 データの可視化は? 計算式の意味を完全に理解していない部分もありますが、情報やデータが揃っているなら、まずは標準偏差を算出して、その意味合いを考えることから始めると良いでしょう。数字をただ並べた表だけでなく、ヒストグラムなどを用いてばらつきを可視化することが、まず第一歩だと感じています。

データ・アナリティクス入門

重要性を再確認しよう!データ分析の基本と新発見

今週の学びの重要点は? 今週の学習を通じて重要だと感じた点は以下の3つです。 まず、分析の目的を意識することの重要性です。現在の業務においても、データを加工したりダッシュボードを作成することに満足せず、あくまで何を導き出したいのか、何を証明したいのかといった初期の目的を常に意識するように努めています。この点を再確認し、今後も目的を忘れずに分析を進めることを誓います。 グラフ作成の新たな発見とは? 次に、グラフのX軸やY軸の配置が読み手に与える印象を大きく左右する点について、新しい発見がありました。これまではグラフの種類による印象の違いは認識していましたが、X軸やY軸の置き方にも注意を払う必要があることを実感しました。これからは、この点を意識してグラフを作成していきたいと思います。 比較分析の基本に戻る必要性 最後に、分析は比較であるという基本に立ち返ることです。業務では前年や前月など、期間軸による比較が多いですが、例えば国籍や予約経路など、他の軸での比較も意識することで多角的な分析が可能になります。これを踏まえ、実践に取り組んでいきたいと思います。 ホテル予約サイトでの活用法は? 現在、ホテル予約サイトのプラットフォーム運営に携わっており、登録施設の売上最大化のサポートをコンサルティングしています。日々の予約データを以下のように活用することで、より精度の高い提案ができると考えています。 - どの国籍からの予約が多いか、平均宿泊日数が長い国籍はどこか - 何月の予約が多いか - 売れている価格帯はどれか データ比較をどう進める? これらのデータを基に、最適な提案を施設に行いたいと考えています。この学びは現在の業務に直結する分野であるため、まずは実践を心がけます。そして、「比較」を意識して、これまで考えていなかった視点からの比較も試みたいと考えています。具体的には、自社内データや他社との比較だけでなく、政府の提供するデータとの比較も行ってみようと思います。 また、前期のナノ単科同様に他者への共有も積極的に行います。学びをチームメンバーに説明することで、より深い理解と正確な認識を確立できるため、この点も重視していきます。
AIコーチング導線バナー

「理解 × 違い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right