データ・アナリティクス入門

どのデータを集めるかが未来を決める

比較の重要性を再考する 分析の本質は比較であることを学びました。これまで、比較対象の選定や要素の統一が不十分だったため、正確な分析ができていなかったと感じます。特に、生存者バイアスがかかってしまうことが多かったことを反省しています。 実証実験で得る結果は? 新規事業を創出する部門に所属しているため、秋から行う実証実験ではデータの適切な分析と比較対象の正確な選定を心掛け、意味のある結果を得たいと考えています。また、取得したいデータの設計も行い、目的に合った実証実験を行いたいと思います。 適切なデータ設計とは? 実証実験の目的を再確認し、成功と見なされるために必要な情報を考えます。どのようなデータを取得すればよいかを設計し、それを企画に反映させます。分析の本質は比較にあることを常に念頭に置き、適切な比較対象を設定することを意識して進めていきたいです。

デザイン思考入門

アイデアの種が芽吹く瞬間

ブレインストーミングはどう? ブレインストーミングは、取り組みやすい手法だと感じました。個人でも実践できるとのことで、日々の業務のなかから一つ以上の要素を抽出し、それに対して自分なりの改善点をたくさん考えてみることができそうだと思いました。 SCAMPER法はどう? また、実践演習ではSCAMPER法を用い、普段意識しない視点から物事を考える機会が得られました。十分に洗練された状態のものに対しても、「もっと削れないか」や「代わるアイデアはないか」といった異なる視点から検討することで、さらに良い結果が生まれる可能性を実感しました。 どうやって大量発想する? 単純なアイデア出しであっても、やみくもに考えるのではなく、さまざまな手法があることを学びました。いずれにしても、最初はアイデアの量を重視し、まずはたくさんの考えを出すことに専念しようと思います。

クリティカルシンキング入門

整理で見つける新しい視点

情報整理の目的は? 情報整理の基本として、まずは「何のために整理するのか」という目的をはっきりさせ、その上で情報を細分化し、必要に応じて加工することの大切さを学びました。その後、細かく分けたデータをグルーピングし、要約する「So What」や根拠を示す「Why So」により、情報の意義や本質を明確にするプロセスに取り組みました。さらに、全体を漏れなくかつ重複なく整理するMECEの考え方もポイントとして意識しています。 イシューの見極めは? 業務においては、イシューを的確に特定し、チーム内で共通認識を持つことが不可欠であると実感しています。また、データを加工して細分化することが、より精度の高い分析につながるため、日々の業務で実践しています。この学びは、コンサルティングの現場で求められるクリティカルシンキング力の向上にも大いに寄与すると考えています。

戦略思考入門

経済性の驚きと実践術

経済性の意味は何? 「規模の経済性」については、事象としては知っていたものの、用語としては初めて学んだため大変新鮮でした。また、「範囲の経済性」に関しては、適用する順序を誤ると、単に手薄でコストが高い状態を招く恐れがあるため、十分な注意が必要だと思いました。 活用されない理由は? さらに、場合によってはこれらの経済性が十分に活かされないケースが存在することも初めて知りました。フレームワークに依存せず、柔軟な対応が求められると感じています。 施策のタイミングは? 「ネットワークの経済性」は、顧客が広告施策を展開する際、施策のタイミングや訴求内容の決定において大いに役立つと考えられます。 育成法はどうする? また、「習熟効果」は、自社組織の運用面で、どのようなメンバーをどのように育成し、案件にあてるかという点で活用できると感じました。

リーダーシップ・キャリアビジョン入門

達成志向と権限委譲で磨くリーダーシップ

理解はどこまで進む? パス・ゴール理論の指示型、参加型、支援型、達成志向型の各スタイルについて、「リーダーシップ理論を使って考える」ワークを通じ、理解が深まりました。自分自身のスタイルとしては、達成志向型がもっとも近いと感じています。 どのアプローチが有効? 部下の経験や力量に応じ、例えば具体的な達成方法や工程を示す指示型や、部下の意見や考えを尊重する参加型など、さまざまなアプローチを使い分けることが、今後の業務に生かせると考えています。 どう委譲で改善? また、リーダーシップを発揮するためには何よりも人に関心を持つことが大切です。すべての部下に同じ対応をするのではなく、各スタッフの力量に合わせた関わり方が求められます。自分はどうしても自分で手を加えてしまいがちであるため、今後は権限を委譲することで、部下の育成につなげていきたいと思います。

クリティカルシンキング入門

分析の視点で新たな発見を振り返る

分析における多角的視点の必要性 データの分類や分析において、偏りのないように複数の切り口を考えることの重要性を感じました。そして、そこから生まれたインサイトが本当に正しいのか、網羅的に考えられているかを見極める必要もあると理解しました。これは実務でも同様で、仮説に基づいて行動する際、その仮説が正しいかどうか、考えに漏れがないかを確認することが非常に大切だと思います。自身の業務に限らず、さまざまな業界の分析を行う際にも、抜け漏れがないように、その都度確認する必要があると感じました。 データ再分類のアプローチは? また、異なるプロジェクトにおいても、共通点やどのように分類できるかを常に言語化するスキルを身につけたいと考えています。過去のアウトプットに関しても、新たな切り口でデータを再分類できないかを模索し、再検討とアップデートを続けていきたいと思っています。

アカウンティング入門

PL活用で利益を生む戦略を再考する

PLで見えるコストと利益は? PLを通じて、どの部分にコストがかかり、どの部分で利益が発生しているのかを理解することができました。それぞれの店舗のコンセプトに応じて、どこに重点を置いて計画を立て、利益を生むためにはどのような売上計画を立てればよいかを再認識しました。 自部署のコスト改善に向けて 自部署では、PLを活用してどの部門にコストがかかっているのか、改善の余地があるのはどこかを分析し、目標を設定して効率的な戦略を立てたいと考えます。また、なぜコストがかかるのかを過去のPLと比較して分析することで、PLをより有効に活用できるようになりたいと思います。 設備投資計画のリスク管理 私の担当する設備投資計画では、PLを活用して設備導入時の利益発生箇所やコスト発生要因を明確にし、投資リスクを考慮しつつ、効果的な設備投資を実施できるようにしたいです。

データ・アナリティクス入門

平均の裏側が見える瞬間

平均計算の選び方は? これまで「平均」といえば、すべてを足して割る単純平均を想像していました。しかし、データの重要度が異なる場合には加重平均、成長率や比率を扱う際には幾何平均を使うなど、状況に応じた適切な平均値の選択が必要であると知り、目から鱗が落ちる思いでした。 散らばりの重要性は? また、データの中心を示す代表値だけでなく、その中心からどれくらい離れているかを示す散らばり(標準偏差)の重要性も学びました。これにより、数値情報をより深く理解する視点が広がりました。 広告指標の活用は? さらに、web広告の運用効率などをより詳細に分析し、目的に応じた指標を活用してデータから正確な情報を読み取るスキルを伸ばしていきたいと考えています。まずは、分散などの指標を視覚化してみることで、思わぬ面白い発見が得られるのではないかと期待しています。

クリティカルシンキング入門

会議を変えるイシュー習慣

雑談で混乱する? 会議中、時間の経過とともに雑談が増えると、どこに向かっているのか分からなくなることがあります。そのため、皆でイシューをしっかり共有し、「今考えるべきこと」を常に意識することで、会議の混乱を防ぎ、スムーズな議論の進行が期待できると感じました。 無駄な業務を省ける? また、イシューを常に意識することにより、本来やる必要のない業務を回避できる点も大きなメリットです。具体的な問いの形でイシューを表現し、その問いを軸にピラミッドストラクチャーで論点を整理する手法は、実際の課題解決に非常に役立つと実感しています。 経験以外の有効策は? さらに、イシューを適切に瞬時に把握できるようになるためには、経験を積み場数をこなすことが重要だと考えています。しかし、それ以外にどのような方法が有効なのか、今後も模索していく必要があると感じています。

戦略思考入門

直感を数値に変える仕事術

業務整理の意義は? 日常生活で定期的に断捨離を意識しているように、業務においても効率を考慮しながら不要なものを整理してきました。基本的には、利益が少なく工数がかかるものを捨てる判断基準として検討していたものの、感覚に頼っていたため、他の業務と比較しているとは言い難い点に気づきました。 新業務の疑問は何か? また、私自身は異動が多いため、新しい業務をゼロから学ぶ機会が多くなります。その際、業務を進める上で常に「なぜそれが必要なのか」「ほかに方法はないか」と自分なりに考え、疑問があれば確認するようにしています。現職では、ほとんどの回答がマニュアルに基づいていたり、前例に従っているため、マニュアルから簡単なフロー図を作ることで、同じ作業を繰り返す中でどこを改善すべきか分かりにくい状況に対し、数字で示すことが説得力を高めるのではないかと考えるようになりました。

データ・アナリティクス入門

平均だけじゃない!データの秘密

平均のメリットとデメリットは? 「平均」という概念について、その利点だけでなく短所も学びました。特に、母集団のデータが偏っている場合、平均は必ずしも母集団全体を正確に代表するとは言えません。そのため、平均値だけでなく、各個別の数値が平均からどれだけ離れているかという「偏差」に注意を払う必要があります。 データ分布はどう理解できる? まず、データを整理する際には、その分布の特徴を把握することが大切です。データが標準偏差を中心にどのように分布しているのか、また何が正常な範囲で、どの数値が異常値として判断されるのかを理解することで、日常的に得られる個別のデータに対して正常か異常かの判断が容易になります。また、やみくもに「平均」が母集団のデータを代表していると考えるのではなく、平均値が実際にデータの特性を十分に反映しているかどうかをまず確認することが重要です。

クリティカルシンキング入門

目的意識で切り拓く日々の学び

目的を忘れたくない? 行動や結果の改善にばかり意識が向くと、そもそもの目的を忘れてしまいやすいです。しかし、クリティカルシンキングの受講においては、常に受講目的や業務の目的を念頭に置きながら、日々の学習を積み重ねることができました。 問題解決の秘訣は? なぜこの問題を解決するのか、解決する必要があるのかといった、目的に立ち返る姿勢で日々の業務を整理しました。進むべき方向性を定めた後は、どのように解決すべきか、これまで解決が難しかった原因は何かをしっかりと捉え、具体的な打開策を考えることに努めました。 毎週の実践成果は? また、毎週テーマを決めて実行することで、インプットがアウトプットに変わり、アウトプットがさらにインプットを磨くというサイクルを意識的に積み重ねました。常にどの方向に進むための日々の習慣を作る目的を忘れずに取り組むようにしました。
AIコーチング導線バナー

「考え」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right