クリティカルシンキング入門

自身のクセを知る:客観視の挑戦

考えのクセ、気付いてる? 自分には考え方のクセがあることを改めて実感しました。具体的には、客観的な視点よりも主観的な考え方に偏ったり、データや数値よりも自分の経験を優先して考えてしまうことに気づくことができました。このクセを直すためには、まず自分自身で常に意識することが大切ですが、それだけでなく、人とのディスカッションの機会を多く作って練習していくことが必要だと感じています。 アンケートはどう読む? 特に顧客アンケートの分析時には、考え方のクセが出てしまわないか注意が必要です。アンケートの自由記述欄では感情移入しやすく、主観的な判断に陥ることがありますが、そうならないように感情に流されず、アンケートから客観的なインサイトを得られるよう分析したいと考えています。 意見交換は必要? まずは自分で現在の課題を意識しながらアンケートを分析します。その後、他人に分析結果を説明して、論理に飛躍がないか、見落としていることがないか確認してもらう機会を設けたいと思います。今後は、多くの人と意見交換を行い、視点の幅を広げることを意識していきたいです。

データ・アナリティクス入門

自ら創る仮説が未来を拓く

仮説の前提って何? 起こった問題や今後の課題に対して、仮説を立てること自体はよく行っていましたが、自分で仮説の前提を作るという点については、あまり意識していなかったため、とても勉強になりました。 どうして巻き込む? また、コーチング手法においても、相手に仮説を立ててもらうことを意識することで、チーム全体を巻き込みやすくなると感じました。 なぜ多角で考える? 具体的には、プランニング時や、問題が発生したプロセスを振り返る際、また未来に具体性を持たせる必要があるときや、チームに各自の未来を考えてもらう場合など、幅広い場面で役立つと実感しています。さらに、一つの仮説だけでなく、異なる視点からの仮説を立てることも重要だと思います。 先が見える計画は? ビジネスプランの策定においては、チームに問いかける際に仮説を促す話し方を意識したり、あえて自分で仮説の前提を設定することで、未来のプランを頭に落とし込みやすくなります。さらに、予想外の事態が起こった場合でも、そのロジックを考え直し、未来に活かすことを意識するようになりました。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

クリティカルシンキング入門

データ活用で見えた新たな視点と工夫

データ加工法をどう活用する? データの加工法について学びました。与えられたデータをそのまま使うのではなく、自分で項目を追加することを意識することが重要です。例えば、絶対値や相対値(比率)を追加することで、データにひと手間加えることができます。数字をグラフにすることも非常に効果的です。また、データを分解する際には、複数の切り口で考えることで異なる見解が得られることがあります。 人件費分析で何を検証する? 現在、人件費分析を行っているため、今回学んだ切り口や加工法を実践しています。具体的には、時間外労働時間の妥当性を検証するために、データを性別、既婚未婚、年齢(若手かベテランか)、部門ごとに切り分けて情報を抽出し、グラフで可視化します。 PowerBIでどう可視化する? 人事データを入手したら、比率や不足している情報を追加し、勤怠情報としての表を作成します。このデータを可視化するためにPowerBIを使用し、グラフ化します。さらに、散布図を用いて時間外労働時間と相関のある事柄を確認し、そのデータを参考に実際に関連性があるかどうかを調査します。

クリティカルシンキング入門

ありたい姿を見つけることで業務効率アップへの道筋

目標設定がなぜ大切? 現状を丁寧に分析し、目指したい姿を明確にすることは、どの業務にも役立つと感じます。内勤業務においても、まずありたい姿や目指すゴールを明確にした上で相手に伝えなければ、指示が伝わりにくいことがあります。そのため、常に「何をすべきか」「何をしてもらいたいか」「何を目標としているか」を自分の中で立て、それに基づいて業務を行いたいと思います。 効率を高めるためには? 現状を把握し、多角的に分析した上で、ありたい姿や目標を設定することが大切です。そして、その目標に向かって何をすべきか考え行動することが求められます。このプロセスを意識することで、業務の効率や効果が向上するでしょう。 小さな業務でも戦略は必要? また、どんなに小さな業務であっても「ありたい姿」や「問い(イシュー)」を自分の中で設定し、そのゴールに向かってどのような戦略を取るか(プランAなのか、プランBなのか)を考え、進めることで、頭の使い方を反復練習させたいと思います。このように常に問いを持つことで、ゴールが明確になり、業務をスムーズに進めることができるでしょう。

クリティカルシンキング入門

クリティカルシンキングが変える仕事のアプローチ

クリティカルシンキングを再評価するには? 改めて「クリティカルシンキング」とは何かということと、「問いから考え始める」ことの重要性を学ぶことができました。私にとっての「クリティカルシンキング」とは、「問いと打ち手(根拠と主張)」だと現在は考えています。物事を考え始める際は、必ず「何の答えが必要なのか」を問いという形で置いてから思考を始めていきたいです。 問いを立てる場面での有効性とは? 問いを立てることが必要な場面は多々ありますが、特にクライアントや社会課題の解決策を考える場面で役に立つと考えています。具体的には、応募の集まっていない企業への母集団形成案を考える際や、その打ち手として企業の年間休日がネックとなっている場合の人の動かし方を考えるときなどです。 定量的な問いで現状分析を深めるには? 漠然と「この企業の採用成功をするにはどうしたらよいか」と考えるのではなく、「この企業の年間休日を120日にするにはどうしたらよいか」や「この企業の応募者数を月5人多くするにはどうしたらよいか」と定量的な問いを立てたうえで現状分析をしていきたいです。

アカウンティング入門

数字に秘めたビジネスの真実

数字は何を示す? 数字の背後には必ずストーリーが存在するという実感を、Week2の学びを通して得ました。P/Lを読み解くことで、企業がどこに価値を見出し、その価値がどのように成功しているのかが明確になると感じています。以前は、どのような工夫でビジネスが展開されているのかを想像するにとどまっていたのですが、今は具体的なデータを通して理解できるようになりました。 競合はどう捉える? また、Week2からWeek3にかけて、単に自社のP/Lを把握するだけでなく、競合他社や興味のある企業のP/Lにも関心が広がりました。来月のTeam Meetingでは、昨年の実績を振り返りながら、自分なりの考察を交えて今後の展望について意見を述べる予定です。 持続可能な働き方は? 今回、特定の企業のP/Lについて詳しく検証した結果、朝早くから夕方までの長時間労働が常態化している現状が浮き彫りになりました。このようなビジネスモデルは持続可能とは言い難いため、今後はコンセプトに沿った収益体制を確立しつつ、業務を他者に委ねる形への移行について検討したいと考えています。

戦略思考入門

軸を見極め、未来を掴む

判断軸の優先順位は? 物事を選ぶ際は、複数の判断軸を検討し、その中で特に重視すべき軸に優先順位を付けることが大切です。そして、判断材料にはできるだけ具体的な数字を用いるよう心がけています。私自身、数字を使うことをおろそかにしがちなので、特に注意しています。 効果的なデータ工夫は? また、データにはひと工夫加え、視覚的にもわかりやすく仕上げることが効果的です。すべてのトレードオフを同時にカバーしようとすると戦略が中途半端になり、結果として失敗してしまう恐れがあります。不必要な要素を捨てることで、際立つ戦略が取れると実感しています。たとえ成功率が低くとも、明確な勝利を狙うことが重要です。 トレードオフはどう見る? さらに、完璧なバランスで効果を最大化できないかどうかも検討する必要があります。トレードオフの関係は、仕事や家庭、目の前の課題と将来への投資といったあらゆる局面で存在します。どこに時間とエネルギーをかけるか、どのくらいのバランスで取り組むかを事前に考えることで、日常生活に流されず、ありたい姿に近づけるのではないかと考えています。

クリティカルシンキング入門

具体と抽象で開く成長の扉

具体と抽象の大切さは? 具体と抽象の両面を行き来することの重要性を実感しました。議論が進む中で、つい具体的な部分に深堀りしすぎてしまい、視野が狭くなることがあると痛感しました。まずは何を解決したいのかという問題意識を持ち、その上で立ち止まる勇気が大切だと感じています。 掘り下げ不足は大丈夫? システム開発会社からの技術派遣ニーズのヒアリングでは、一見、案件内容や必要なスキルがテキストで整理されているため、手軽に内容を把握できる反面、それ以上の掘り下げをしなくなりがちだと感じました。これは、お客様側が要件のすり合わせを完璧に行っているという前提に陥りやすいことに起因しています。そのままの形で提案を進めると、結果としてコスト競争に陥り、収益性に悪影響を及ぼす可能性があるため、いただいたご依頼をそのまま受け取るのではなく、解決すべき課題の優先順位を合意の上で整理し、当社独自の提案へとつなげていきたいと考えています。 最適解はどこに? また、VUCA時代と呼ばれる現在において、何をもって最適解とするかの定義を明確にすることが難しいと感じています。

戦略思考入門

コモディティ化を超える戦略発見旅

フレームワークの役割は? 自社のサービスや商品の特性を明確にし、理解を促進するためのフレームワークを学ぶことができました。特に、習熟効果があるポイントを超えると、競争相手とのコスト差がなくなり、差別化が難しくなって事業が行き詰まるという点については、自社の事業にもいずれ該当するリスクがあると感じています。 競争優位性をどう維持する? 製品がコモディティ化してしまうと、技術の優位性やコスト削減の努力が事業の成長につながらなくなることを実感しました。そのため、さらなる競争優位性を持つためのポイントを見つけるか、新たな事業を立ち上げる必要があると考えられます。こうした重要な局面で、この講座で学んだフレームワークが役立つと感じました。 中期経営計画に向けての準備 今後の中期経営計画の策定においては、自分がその責任者になったつもりで、プロダクトの将来を予測し、開発計画を立てることを想定しています。この講座で学んだフレームワークを駆使して、自社のビジョンに基づいた5年後、10年後の理想的な姿を提示できるように、年度内にアウトプットを作成する予定です。

データ・アナリティクス入門

偏差値では語れない実感

平均に秘めた疑問は? 教育現場では、単純平均ばかりが重視されがちです。標準偏差を基に算出される偏差値は、詰め込み教育の象徴とされることもありますが、標準偏差を無視すると真実を見誤る可能性があることを、ぜひ周囲にも伝えていきたいと思います。 統計教育の難しさは? 私は高校で数学の教員を務めており、新課程において数学の統計分野が必修となったため、標準正規分布まで教えることになりました。この単元は多くの数学教師にとって教えにくいと感じられがちですが、実際に社会人になってから最も役立つ知識であると実感しています。実際、校内の制度を変更する際には、正規分布に基づくデータを示すことで説得力を得た経験があります。 定量分析に挑戦すべき? また、私は生徒の成績データを扱う部署に所属しており、統計の知識はすでに成績データの分析に活用されています。一方で、生徒募集に関しては、一般企業での営業活動に例えられるように定性データが中心で、定量データの解析が進んでいません。そこで、データ収集の方法を見直し、次年度から定量的な分析を強化していこうと考えています。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。
AIコーチング導線バナー

「考え」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right