データ・アナリティクス入門

1月の謎に挑む!仮説力の全貌

仮説の違いは何? 仮説を立てる際に活用できるフレームワークについて、改めて学ぶ機会となりました。そこで、結論としての仮説と、問題解決のための仮説という2つの考え方があることを理解しました。また、問題解決プロセスにおいては「where(どこで)」「why(なぜ)」「how(どのように)」の視点を意識することが重要だと認識しました。 利用状況変化はなぜ? 具体的な事例として、12月から1月にかけてサービスの利用状況が低下した際の対応を検討しました。結論の仮説としては、長期休暇中にサービスから離脱が起きたという点を重視しました。同時に、特に正月期間にユーザーの離脱、すなわちチャーンが発生した可能性に着目し、問題解決に向けた仮説を立てました。さらに、年末年始の背景を踏まえ、プッシュ通知などでログインを促す導線を作ることが有効ではないかという仮説も検討しました。 データで何が分かる? 加えて、12月から1月のサービス利用状況について、デイリーベースでデータ分析を実施しました。離脱ユーザーの属性やこれまでの傾向を可視化するとともに、プッシュ通知などのお知らせがログインのフックとして機能するのかをテストする工程を経ました。

データ・アナリティクス入門

データに潜む真実を見抜く技術

視覚的要素の活用法は? 目は最高の分析ツールです。顧客へのプレゼンでは、すぐに理解できるグラフや表を用いることが重要です。特に、目の前にあるデータや事象にだけ引っ張られず、見えないものも比較対象として考慮することが肝心です。分析の着眼点としては、逆説的な発想を持ち、新たな仮説を立てられるようにすることで、重要な点を見落とさない思考を身につけることが求められます。 データ活用で成果を上げるには? 現在の業務においては、データを活用して顧客の課題解決を図っています。営業活動においても、新規顧客の案件獲得やリード獲得にデータを活用できると考えます。しかしながら、広告媒体や営業ツールの選定では、比較対象のデータがフェアに整わないことがあり、会社との相性も考慮する必要があるため、仮説の設定やデータの加工が難しいと感じています。 目的設定の重要性とは? そこで、目的をしっかりと設定することが重要です。顧客の要望をそのまま受け取るのではなく、意思決定や課題解決にどうつながるかを見極める必要があります。また、仮説の設定については、見えているデータ以外にも比較や仮説の対象となるものがないかを意識して考えることが求められます。

クリティカルシンキング入門

論理的思考で考えをクリアに整理

意識の偏りはどうして? 思考は意識しないと、自然と偏りが出てしまうことを改めて認識しました。論理的に考えるためには、あらかじめその方法を意識して思考の癖を避けることが重要だと学びました。これにより、論理的かつ客観的に言語化するスキルを身につけることができます。 伝え方はなぜ大切? 自分の意見や考えを人に伝える際には、まず自分の思考を振り返り、論理的で飛躍のない説明を心がけたいと思います。現在、私は本の制作に関わっており、その内容を多くの人にわかりやすく伝えるために、論理的な説明ができるよう努力しています。 他者との対話はどう? さらに、他者とのコミュニケーションを通じて、自分の考えを言語化することが大切だと理解しました。これにより、思考の癖や偏りに気づくことができました。今後も積極的にアイディアをアウトプットし、自分の思考を振り返りながら「思考の筋トレ」を積んでいきたいと思っています。 発信の極意は何? アウトプットの機会を増やすために、人との意見交換やnote、SNSへの投稿、ジャーナリングを活用します。また、自分の思考を可視化し、思考する前や話し始める前にその方法を意識していきたいと考えています。

戦略思考入門

健康経営で選択と集中が成功の鍵

選択と捨てる勇気が大切? 選択すること、捨てる勇気が大事であり、どこに集中し、何を得たいのかを考えることが必要だという教えを学びました。そのため、判断基準は一つではなく、関連する複数の視点を持つことで漏れを防ぐことが重要です。それでもブレークスルーできない場面があるかもしれませんが、その際は慎重に決断することが求められます。 健康経営で必要なものは? 現在、健康経営において何が必要かを模索しています。メンタル不調者の背後には必ず原因があり、それに対応するための十分な対応力と周りのフォローが不可欠です。個別対応は必須ですが、全員をチェックする時間はありません。したがって、アプローチするターゲットやタイミングを効果的に考えることが重要です。 選択による利益を意識するには? 選択を通じて得られる利益の大きさを意識することが求められます。また、今やっていることが全てではないことも認識し、なぜ行っているのか、そしてその結果を考える必要があります。人を変えるのは難しいですが、一人でも救うことができれば、その意識を持ち続けていきたいと考えています。それによって、残りの多数の人々に対しても効果的な対策を模索していきたいです。

データ・アナリティクス入門

データ分析の視点で課題解決を探る

データ分析で大切な視点とは? データ分析における比較の重要性を学びました。特に、比較対象をゴールに対して適切に選定することの重要性を実感しました。また、目の前にあるデータだけで判断することの危うさも理解しました。これは生存者バイアスの影響です。存在しないデータを考慮することが大切であり、今目の前にあるデータだけで課題解決になるのか、一度立ち止まって考えることの重要性を感じました。 仕事の中でのデータ活用法 私の仕事は、様々な事業部門からのデータ分析依頼に対応することです。その際、依頼されたデータそのままに100%応えるのではなく、そのデータで本質的な課題が解決されるのか、他の視点から分析する余地がないか、など多方面の視点を持つことが求められます。また、新たなデータ取得も視野に入れ、依頼主とともに問題解決に向けて進めていきます。 視点を広げる提案の予定は? 現在対応中の案件では、特定のデータソースを特定の視点から可視化していますが、これは単なる時短や作業効率改善だけではありません。事業部門の本質的な課題である収益性向上や利益改善に向けて、8月内に依頼元にヒアリングし、別の視点からのデータ活用を提案する予定です。

クリティカルシンキング入門

課題を「分解」してデータを見落とさない秘訣

解像度向上の手法とは? データの解像度を上げる手法をいくつか学びました。「全体像をとらえる」ことで近視眼的な視点から脱却し、「分解」を積極的に取り入れることで、課題や問題をより具体的に抽出することが可能です。漏れや抜けをなくすことが、一見遠回りのように見えても、結果的には最も効率的な方法であると感じています。 異なる視点での分析の重要性 売上分析や時間帯分析などを行う際には、ただ数字を並べるのではなく、違う角度からの見え方を取り入れることで、見落としや抜けを防ぐことができると考えています。プレゼンの機会があった際も、通り一遍の見方ではない切り口を提案することで、新たな課題を抽出することができるのではないかと感じています。 数値報告での注意点は? 月例のミーティング用に数値報告の素材を提供する際は、以下の点に注意しています: - 並べた数字を別の視点で並べ替える。 - 補完できる部分がないか同僚に相談し、思考や見方の偏りに気付く。 - すでにグラフ化されているものについては、異なる切り口で見せ方を検討し、恣意性がないか確認する。 これらの工夫により、より具体的で効果的なデータ分析が可能になると実感しています。

クリティカルシンキング入門

伝わる力UP!ナノ単科の学び

伝わりやすくする工夫は? 作り手の意図を相手に明確に伝えるためには、いくつかの工夫が必要だと感じています。まず、強調したい点には一言添えることで、その部分に注目してもらいやすくなります。また、相手が情報を受け取る順番に合わせて図表を配置し、一目で内容が理解できるように心がけています。 アイコンの効果はどう? さらに、文字だけでなくアイコンを補助的に用いることで、視覚的に理解を促す効果を狙っています。ただし、過度な強調や装飾は逆にノイズとなる場合があるため、その点は常に注意しているところです。 メール内容は適切? また、メールでのやり取りにおいては、件名の頭に期限や要件を記載するなど、目に付きやすい工夫を施していました。しかし、結果としてメール文内は情報や強調が過多となり、相手に負担をかけてしまっていたことに気づかされました。 資料作成のコツは? 今後は、メールだけでなく報告書やスライドなど、伝える形式に合わせて文字の強調と図表の使い方をバランスよく工夫していきたいと考えています。まずは伝えたいメッセージをきちんと整理した上で、相手にわかりやすい形で視覚化することを最優先の課題として取り組む所存です。

マーケティング入門

受講生が感じた成長の瞬間

イノベーションって何が大切? イノベーションの普及には、比較優位性、適合性、わかりやすさ、使用可能性、可視性の5つの要件が求められます。製品やサービスの売れ行きは、顧客が抱くイメージに大きく左右されるため、ネーミングや宣伝は、顧客に理解しやすいものにする必要があります。こうした点から、顧客の心理を正確に捉えることが重要だと言えます。 顧客ニーズはどう捉える? 一方で、差別化の過程においては、競合他社の動向に気を取られすぎると、本来の顧客ニーズを見失う危険性があります。常に顧客に目を向け、顧客の期待に沿った商品づくりを心掛けることが大切です。 IT提案はどう評価する? 自社のITソリューションの提案を上記の普及要件に照らして考えると、まず比較優位性を示すために、新しい技術やアーキテクチャを採用し、従来システムと比べて優れている点を強調することが求められます。次に、適合性の観点からは、顧客の現行の運用に大きな変更を加えることなく、作業効率などの負担を軽減する提案を実施する必要があります。また、わかりやすさについては、全ての要素を網羅的に説明するのではなく、顧客にとって効果が高い点を中心に伝えることが効果的です。

マーケティング入門

顧客志向で見つける新たな道

顧客志向ってどう捉える? マーケティングの学びでは、顧客志向の考え方に大変参考になる点が多く、マーケティングという言葉の定義が人によって異なるため、社内での認識共有の大切さを改めて実感しました。 変化をどう見る? また、講習中にある方のコメントで「自社のサービスを通して顧客にどう変化してほしいのか」という視点が示され、その意見に新たな気づきを得ることができました。これまで私は、サービスや商品がどのように受け入れられるかという点だけに注目していたため、顧客の変化も視野に入れる考え方は非常に刺激的でした。 実践のヒントは? 自社製のサービスを新規検討する際や商談時に、本講習の内容を活用していきたいと思います。ただし、具体的にどのように適用できるかはまだイメージが固まっていません。その中でも、まずは「顧客志向」というキーワードを念頭に、相手のニーズをしっかり把握する姿勢を実践していきたいと考えています。 他業種との対話は? 私の業種は自社製品の普及を目的としていないため、一層、マーケティングや営業、さらには他業種の方々との意見交換を通じて、それぞれの課題に対するアプローチを学んでいけたらと期待しています。

データ・アナリティクス入門

平均を超えた数字の物語

分析の精度をどう? 普段の分析では平均値に頼ることが多いですが、データのばらつきを十分に表現できない点が印象に残りました。標準偏差はこのばらつきを把握するための指標であり、分析の精度を高めるためにぜひ取り入れるべきだと感じています。業務ではすでにビジュアル化の手法を用いていますが、今後は標準偏差も活用していきたいと考えています。 採用分析の狙いは? 採用状況の分析については、平均値だけではなく標準偏差を用いることで、応募者数や面接評価の個々のばらつきをしっかりと捉え、より詳細な傾向を分析する計画です。これにより、採用プロセスの安定性や特定の職種や部門における採用難易度の変動を明確に把握することが可能になります。その結果、より効果的な採用戦略の策定やリソース配分の最適化へとつなげることを目指しています。 計算環境はどう? 現在は、最新の採用データを整理し、Excelなどのツールを用いて標準偏差を計算できるような環境を整えています。主要な指標である応募者数や面接評価の標準偏差を算出し、比較分析を実施する予定です。こうした分析結果を視覚化して定期報告に組み込むことで、より深い洞察を得られる体制を構築していきます。

データ・アナリティクス入門

ロジックツリーで見える新発見

シンプル化の秘訣は? 「ロジックツリー」と「MECE」には、考え方やビジュアルがシンプルで分かりやすいという印象を受けました。混沌とした状況下で課題が見えにくいと感じるとき、ただ箇条書きにするのではなく、階層化や図示を行うことで、頭の中をすっきり整理できると思います。また、MECEの使い方においては、突き詰め過ぎることが必ずしも良くないというアドバイスが非常に参考になりました。 伝達工夫はどうする? 「ロジックツリー」と「MECE」は、自分自身の業務整理だけでなく、後輩への指導やグループ内での問題解決にも役立てたいと考えています。普段、口頭やメールだけで意思伝達を済ませがちな点を反省し、今回学んだ手法を取り入れて、相手により正確に意図を伝える工夫をしていきます。 見える化はなぜ? 所属する営業グループでは、週2回のミーティングで各個人やグループ全体の課題を共有しています。そこで今回学んだ思考法を活用し、課題を見える化することで、より分かりやすく整理できると感じています。また、私個人としても、週末にリラックスした時間を設けながら紙にロジックツリーを書き出し、課題を整理する試みを行いたいと思います。

データ・アナリティクス入門

データ分析で実務力を即戦力に!

データ分析の基本を見直す データ分析の基本的な考え方として、「データ分析は比較である」、「データをどのように加工すると分かりやすいかを考える」、「データ分析の目的を明確化する」ことが重要であると認識しました。これまでの自身の業務を振り返り、反省しつつ、今後のデータ分析においてはこれらを忘れずに取り組むことが大切だと考えています。 どのように実績データを活用するか? グループ各店の業務実績データ(定量・定性)の分析を通じて、それぞれの店舗の課題を抽出し、傾向を把握します。そして、課題解決に向けた戦略を立案する際には、データアナリティクス分野で学んだ知識を活かしたいと思っています。 学習した知識を実務にどう活かす? この科目での学習を継続して実務に活かすためには、セミナー視聴やグループワークだけでなく、自主学習を行い、習熟度を高めていくことが必要です。そこで、平日の早朝30分から1時間、そして週末にも学習時間を確保し、理解を深めていく計画です。また、実業務においては、6週間後に学びきるまで待つのではなく、WEEK1から学んだことを即座に業務でアウトプットする意識を持ち、実践力を向上させたいと考えています。
AIコーチング導線バナー

「考え」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right