クリティカルシンキング入門

問い続ける力が未来を創る

初めての学びは? Week1からの学びを振り返り、重要と感じた項目を整理しました。これを同僚に伝えるべきだと考えています。 問いをどう継続? まず、「問いを意識し続ける」ことが大切だと感じました。問いの意識を緩めてしまうと、物事を漠然と受け入れてしまうリスクがありますので、常に問いを意識し続ける習慣が必要です。また、経営者などの上位層の視点で問いの意味を考えることも重要です。現在のポジションの考え方では上位層の課題を理解するのは困難ですので、上位層の視座、視野、視点で問いを考え、課題を具体化する必要があります。 常識に挑む理由は? さらに、「そもそも」を意識し続けることが大切です。人は現在の業務を素直に受け止め、変えたくないと思う傾向があります。しかし、常識やルールに対しても常に疑問を持つことが求められます。資料作成も軽視せず、理解を早めるためのひと手間を惜しまないことが重要です。打ち合わせを口頭のみで行うのは相手に失礼であり、時間を浪費する行為ですので、資料を前提として、効果的に理解を得るための工夫を心がけるべきです。 経営層の視点は? 経営企画を担当している立場としては、様々な問いを持ち、課題や施策を検討していきたいと考えています。例えば、「全社の売上・利益を最大化するには?」といった問いに対する解答を見出すため、経営層・上司の視点を意識し、必要な情報を捉えることが重要です。また、根拠となるデータ収集・分析も重要なプロセスであり、そのための環境整備にも取り組んでいきたいと考えています。 報告の意義は? 業務上、毎月定例の業績報告があり、課題や施策の検討機会を得ることができます。この報告準備を課題・施策を考える契機とし、報告対象である経営層が必要とする情報を仮説しながら組み立てることを継続的に実施したいと思います。 研鑽の成果は? 自己研鑽の一環として、同僚や部下へのレクチャーを行うことで、自分のスキルアップにも繋がると考え、社内で勉強会を開催していきたいと思っています。勉強会の内容は、業務上でのクリティカルシンキングや戦略的思考を取り入れたものにし、業務と関連させることで理解を深めてもらいたいと考えています。開催後には、内容が本当に役立ったかを問い続け、常に反省し、内省する意識を持ち続けたいと思います。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

クリティカルシンキング入門

相手に伝わる視覚化の極意

伝えたいことは? 今回のテーマは「相手の理解を促進させる視覚化」でしたが、まず大切なのは、相手に何を伝えたいのかを明確に決めることだと感じました。視覚化する上で使える手法には、グラフや文字、スライドなどがありますが、できるだけシンプルにしながらも最大限のメッセージを伝える工夫が必要だと思いました。具体的な学びは以下の通りです。 グラフはどう使う? まず、グラフについてです。時系列データには折れ線グラフや縦棒グラフ、データ量の比較には横棒グラフなど、それぞれの特徴を活用することが重要です。 文字はどう工夫? 次に、文字についてです。自分はカラフルになりがちですが、強調したい文言が過剰にならないよう注意したいです。また、使う色の中身も意識しながら差別化を図ることが大切です。 スライドで誘導は? 最後に、スライドについてです。メッセージの順番は左から右、上から下に配置し、強調したい箇所には矢印を入れて視点を誘導する工夫が効果的です。 学びはどこに? 学んだことは、主に次の2つの場面で活用できると思います。 研修資料の工夫は? まず、社内研修設計におけるスライド作成です。現在、マネージャー候補向けの研修設計を考えており、スライドを作成する必要があります。研修の難易度が上がり多くの資料を収集する分、スライドはできるだけシンプルにする工夫をしたいと考えています。 提案資料はどうする? 次に、経営陣に提案する人事資料作成です。現在、週に1~2回、経営陣に人材戦略に関する提案をしています。その際に資料についていくつか質問を受けることがあるので、資料を一目で理解できるよう改善していきたいと思います。 行動計画は何だろう? これらを活用するための行動計画は以下の通りです。 研修計画のポイント? 社内研修設計におけるスライド作成では、情報の順番とメッセージの順番を一致させ、グラフを取り入れる際にはできるだけ一つにまとめ、フォントのカラーを意識的に差別化することを考えています。 資料改善の注意点は? 経営陣に提案する人事資料作成では、基本的なことですが、グラフにタイトルを必ずつけ、適切なグラフかどうかを常に確認し、データが時系列なのか、要素なのか、変化を表現したいのかを考慮することが重要です。

データ・アナリティクス入門

データ分析で未来を築く!ナノ単科の意義とは

なぜ分析の目的を見失わない? まず、「何のために分析するのか」という「目的」を見失わないことが重要です。その上で、その目的を果たすためにはどのようなデータをどのように分析すれば良いのかという「仮説」を立てることが必要です。その仮説に基づき、必要なデータを収集し「意味を読み取る」ために適切にデータを加工し、その分析結果から新たな発見を導き、より良い意思決定を行うことが求められます。 データビジュアル化の役割とは? データ分析の一連のプロセスにおいて「意味を読み取る」ためには、代表値である平均値および中央値、ばらつき度合いを分布として示す標準偏差を用いた全体像の把握が重要です。また、それらを一目で容易に把握するためにデータのビジュアル化も欠かせません。そして、ビジュアル化されたグラフを見る前に、それまでに得た定量情報や定性情報をもとに自らの解釈と仮説を立て、その解釈・仮説と実際のデータを比較するアプローチを繰り返すことで、分析を深めていきます。 データ分析の順序を守るには? いざデータを前にすると、「仮説を立ててデータを見る」のではなく、「データ同士を比較して仮説を立てる」という癖があることに気づきました。この順序を間違えると意味がなさず、分析を深堀りできません。自然と正しいプロセスを踏むことができるようになるまで、意識して練習を繰り返したいと思います。 予算策定に活かす分析手法は? 直近では、予算策定にこのアプローチを使います。過去の売上や原価をもとに、標準偏差、加重平均、幾何平均、中央値を使ってより確からしい代表値を出し、定性情報も加味して来期の予算を策定します。この際、「仮説を立ててデータを見る(仮説との比較)」ことを意識して取り組みます。また、その代表値にした理由や定性情報の扱いについて第三者と共有し、対話を重ねることで、納得性のあるものとして示すことができるように努めたいと考えています。 今後意識する改善点は? 今後、以下の点を意識して取り組みます。 1. 標準偏差、加重平均、幾何平均について再度勉強し、特徴を深く理解する。 2. 「結論ありき」や「経験と勘」に頼らず、データ分析のプロセスを一つずつ丁寧に踏む。 3. 定性情報を「落としどころ」や「決め打ち」の要素として扱わないように意識する。

クリティカルシンキング入門

イシュー解決力で実務が変わる瞬間

今週の学びは何? 今週、このコースの学びを整理し直し、3つの重要な点を改めて認識しました。 問いの意義は何? 第一に、「問い」が何かを考え、それを明確にすることは非常に重要です。イシューを特定することで、なぜその問題について議論しなければならないのか、その目的がはっきりします。 イシューをどう特定? 第二に、イシューを特定するためには、既存のデータを様々な角度から分析し、ピラミッドストラクチャーで情報を整理・構造化する必要があります。これにより、本質的な問い、「イシュー」を決定し、解決することが可能となります。 表現方法はどう? 第三に、相手の立場に立って表現し、主語や述語を明確にすることが大切です。スライド作成時は、グラフの活用やメッセージの強調などを通して、何を伝えたいのかを分かりやすく示すことが求められます。 業務にどう活かす? この学びは、日常の業務、たとえば「関連部署への調達コスト説明報告」や「新規プロジェクト立ち上げ・運営」「部署内の売上報告」など、さまざまな場面で活用できます。なぜなら、これらはすべて課題解決や他者との協働を伴い、問いを特定し、構造化して解決することが本質だからです。また、他者に対する表現は、強調するポイントやメッセージを明確にすることが重要です。 調達報告は何故? 具体的な活用例として「関連部署への調達コスト説明報告」を挙げると、以下のようになります。 【考え方】 これまで、報告内容は漠然と定められていましたが、まず「なぜ報告するのか、相手は何を知りたいのか」を明確にすることから始めます。これにより、報告内容や方法、頻度、対象者を最適化できます。特に調達コストについては、各品目の状況に応じた本質的なポイント「イシュー」を特定し、説明に活かしたいと考えています。大きな金額や重要品目については、ピラミッドストラクチャーを作成・提示し、その考え方を共有することで、相手の納得度も高まると感じています。 伝え方はどうする? 【表現】 先方が知りたいことや、その後の情報の取り扱い方を明確にした上で、グラフの見せ方や強調ポイントを調整します。また、どの視点(相手目線、自部署目線、自分目線)で話をするのかに注意を払い、主語と述語を明確にしながら報告を進めます。

データ・アナリティクス入門

データ分析で見つける新たな視点

データ分析における比較の重要性とは? データを比較することは、他のデータと比較することでその意味合いを読み取ることにあります。繰り返しになりますが、「分析は比較なり」が重要です。単純な平均では見落としやすい情報を把握するために、データのビジュアル化を駆使し、バラつきを視覚的に理解することが求められます。比較を行い、グラフを解釈することで仮説を立て、その結果として次に分析すべきデータや分析の深掘りの方向性が明確になります。 代表値だけで十分か?アプローチを考える 大量のデータを比較するアプローチについて考える際、代表値の使用だけではデータの分布状況がわかりません。データの分布を考慮するために、標準偏差を併用します。標準偏差が大きければバラつきが大きく、小さければデータが集約していることを意味します。また、データをビジュアル化することも重要です。実際の業務では、加重平均とデータのビジュアル化が主に行われています。 代表的な数値には以下のものがあります: **代表値** 1. 単純平均 2. 加重平均 3. 幾加平均 4. 中央値 **散らばりを表す数値** - 標準偏差:標準偏差が大きいとデータがばらつき、小さいとデータが集約している。正規分布と2SDルールも考慮します。「起こりにくいことが起こっている」という実感値は5%です。 分析の深化にはどのプロセスが必要? 分析の内容に応じた代表値を使い、内容に応じたビジュアル化の方法を考えることが大切です。案件の特徴を「プロセス×視点×アプローチ」で分析することに重きを置くと良いでしょう。会社の施策展開にあたっても、目的に応じた比較を行い、ビジュアル化し、そこから仮説を立てて分析を深めていくサイクルを徹底していきます。過去の導入事例から仮説検証を行い、どの層にヒットしているかをビジュアル化し、現在進めているターゲティングの選定を進めていくことが求められます。 学びの共有はどのように行う? まず、メンバーにWEEK3の学びを共有し、現在取り組んでいる施策のターゲティングに役立てたいと考えています。根拠のあるデータを作成し、より良い意思決定に繋げることが目標です。代表値と標準偏差の仕組みを理解し、必要に応じて使い分けるために、日常の業務に取り入れてみることから始めましょう。

データ・アナリティクス入門

数字が語る!原因分析のコツ

原因分析のポイントは? 「why:原因を分析」という問題解決のステップについて学び、実際の業務に活用するためのヒントを得ることができました。原因分析では、問題がなぜ発生したのかデータを基に追及し、原因が特定できた後に解決策を検討するという流れを確認しました。 プロセス分解の極意は? この授業で得た学びは主に2点あります。まずは、データをプロセスに分けて考える方法です。課題では、ウェブサイトの広告表示から体験レッスンへの申込に至る一連のプロセス(広告表示→広告クリック→申込)の各段階のデータを比較し、同じ経路を辿った中でどこで数値が落ちているかを検証しました。比較する際は、各プロセスの分母が異なるため、率で示す点が重要です。率が低いプロセスに問題があると考え、具体的な原因を探る有効な手法だと実感しました。この方法により、どこから改善に取り組めばよいのかが明確になり、必要なデータの選定も容易になると感じました。 原因思考の広がりは? 次に、原因を考える際は思考の幅を広げる必要があると学びました。フレームワークの一つとして、対概念という視点を活用する方法があります。たとえば、「自社の戦略に原因がある」と「自社の戦略以外の要素に問題がある」という二つの視点から原因を考えることで、一方向への固執を避けることができます。この手法は、原因の決め打ちを防止するのに非常に有効だと感じました。 遅延の要因は? 実際の業務で、業務の遅れが他部署に影響を与えている場合、まずはその業務を複数のプロセスに分解し、どの段階でボトルネックが発生しているのか、数字を元に比較することが有効だと考えます。原因追求においては、MECEの考え方も必要不可欠です。さらに、原因に関わる要素が明らかになったら、それ以外の可能性も併せて検討することで、一面的な見方に陥らずに対策を練ることができると実感しました。 学びをどう今後活かす? この学びからは、事象には必ずプロセスが存在し、分解して比較することで原因を特定できること、そしてよい事例についてもプロセスの整理が応用可能であることを改めて確認しました。今後は、問題だけでなく成功事例にもプロセスの視点からアプローチし、より幅広い視野で原因と対策を考えられるよう努めていきたいと思います。

戦略思考入門

自分も変われる戦略のヒント

戦略の全体像は? WEEK1からWEEK5まで、また動画学習を通じて、戦略思考の全体像を学ぶことができました。特に、目標から逆算する考え方や、プラン作成時に実現可能性を徹底的に検討するプロセスを知り、過去の慣習にとらわれず本当に必要なものかを見極め、不要なものは排除する選択ができるようになっていきたいと感じました。 判断の見直しは? これまで自分の職務に結びつけることを重視してきましたが、今回の学びで仕事以外の場面でも活用できると実感しました。日々の業務に加え、直感やこれまでの経験則に頼った判断を一度立ち止まって見直し、思いついた背景や考えの偏り、抜け漏れがないか確認する習慣を身に着ける重要性を強く感じています。 未来像はどう見る? また、最後のライブ授業で「どういう人になり、どういった人生を送りたいのか」という問いに触れ、自身の職務に偏った考え方から脱却し、広い視点を持つ戦略思考が、組織や社会への貢献、さらには豊かな人生の実現につながることに気づくことができました。 情報活用の秘訣は? さらに、現状分析における情報収集の重要性や、日頃からの情報アンテナの感度を高めておくことが不可欠だと感じています。プランを振り返る際には、現在の状況を正確に把握し、優先順位を決めることが今後の成長につながると考えています。また、自分自身のありたい姿を再検討し、組織から求められることや、自分が本当にやりたいことについて深く掘り下げていく意識が芽生えました。 情報収集の極意は? プラン作成の段階では、必要な情報が何かを検討しながら情報収集を進めることが多く、特に業界全体や競合の動向など、幅広い情報に日頃から触れておくことが重要だと実感しています。情報を収集し、大きな流れを把握することで、必要な情報の選別や深堀りがスムーズになり、プランの精度が高まると考えています。 振り返りで何を掴む? また、プランの振り返りの際には、環境の変化や過去に達成できたこと、反対にできなかったことなどを多面的に分析し、今やるべきこととやらないことを明確に判断していきたいと思います。年間計画の実行状況も振り返りながら、来年度以降の優先順位や興味のある仕事について改めて検討し、自分があるべき姿をブラッシュアップしていくことに意欲を感じています。

データ・アナリティクス入門

データ活用で未来を切り拓く鍵

目的を明確にする重要性は? 目的を明確にすることと、正しい比較を行うことは非常に重要です。動画の例では、提示された数字をそのまま信じてしまう場面がありましたが、実際のビジネスシーンでも同様の例は多いと感じます。そもそも、その数字は何のために存在するのか?どのような基準で比較しているのか?比較の手法や数字の計算、抽出方法は正しいのか?データの精度や信頼性も重要です。AIの助言を受けて、身近な実例として新聞のチラシやテレビショッピングに出る数字を見て、何を示しているのか粘り強く理解していきたいと思います。例えば、「当社比」とは一体何を指しているのか?私の両親もそのまま鵜呑みにしているようなので、注意したいところです。 戦略経理とは何か? 経理に関しては、記帳や財務諸表作成がAIや外注で可能になると考えています。ただ、仕訳を行い記帳している際に「不思議だ」と思う点があり、そこを深堀りすることで経費や売上を分析し、会社全体が利用できるデータにすることができるのではないかと考えています。「戦略総務」や「戦略人事」という言葉を聞いたことがありますが、「戦略経理」という考え方もあって良いのではないかと感じます。 データ・ドリブン経営をどう進める? 意思決定にはデータの利用が不可欠です。データ・ドリブン経営という言葉が以前からありますが、そもそもデータに基づかない経営が存在するかという疑問が湧きました。実際の現場では感覚や感情に基づく経営が主流でしたが、私が関与する場面ではデータに基づいた意思決定を推進していきたいです。 仕事の目的を再確認する重要性 業務全般において、目的を明確にすることが重要です。これまでの仕事の中で、議事録作成などの業務において何のために行うのかという明確な目的がなかったため、非効率的となっていました。しかし、目的を明確にすることで効率的に正しい結果を得られるようになることを意識したいと思います。 転職活動で心掛けることは? 現在、転職活動中で新しい職場を探している中、今後の行動指針として、意思決定に際しては必ず数字の裏付けを吟味すること、目的の明確化を徹底することを心掛けたいです。また、以前に読んだ本や少しかじった統計検定の内容と重なるところが多いことから、統計学を一度学び直したいと考えています。

クリティカルシンキング入門

ピラミッドで磨く伝える力の秘訣

伝え方の基本は? このトレーニングでは、人に正しく言葉を伝えるための方法として、「日本語を正しく用いる」「文章を評価する」「手順を踏んで書く」といったアプローチについて学びました。実際の仕事や日常生活の中で、うまく伝えられていないと感じる場面が多々あるため、その要因と改善策を整理することができました。 評価の視点は? 特に印象に残ったのは、「文章を評価する」と「手順を踏んで書く」という点です。前者では、主張に対する理由づけにおいて、相手が求めるニーズが異なることを意識することの重要性を学び、相手のニーズに合った理由づけをするために自分の視点を明確にしながら言葉を組み立てる必要があると感じました。 手順の整理は? また、「手順を踏んで書く」では、ピラミッドストラクチャーを用いて、主張とそれを支える理由を「柱」のように整理する手法を学びました。対となる概念を意識した根拠の選定から具体的な表現にまで至る流れを意識し、今後の文章作成に活かしていきたいと考えています。 新たな発見は? 全体を通して、「言葉を書くこと」が思考力の向上につながるという点、また、自己流の文章ではなく他人の文章を参考にしたトレーニングが効果的であるという具体的なアクションの示唆を得ることができました。これらの学びを実際に実践していきたいと思います。 実践で感じる? 日々の会議や顧客とのやり取り、プレゼンテーションにおいて、今回の研修内容を積極的に活用することで、伝えたい主張に対して正しい理由づけがなされ、理由が漏れなく具体的に説明されるようになると期待しています。特に会議では、事前に共有された資料などをもとに準備を進め、ピラミッドストラクチャーを活用して、主張と根拠が会議の目的やゴールに適切に結びつくよう工夫しながら実践を重ねていきたいと考えています。 意見発信はどう? 私自身、職場では自分の考えを率直に述べるという文化があるため、意見を発信することが求められています。しかし、過去の失敗経験やプレッシャーから、意見を述べることに対して苦手意識を持っていた面もあります。今後は、複数の根拠を示したうえで、それらが会議の目的としっかり結びついているかを検討しながら、より分かりやすく効果的なコミュニケーションを目指していきたいと思います。

クリティカルシンキング入門

考える力を伸ばす!柔軟な思考習慣の大切さ

本当に問題は何? 事象に対して「何が問題か」を捉え続け、「本当にそれであっているかな」と問い続けることの重要性を感じました。私自身、考えることに疲れるとすぐに白黒つけたくなりがちなので、根気よく問い続ける習慣をつけたいと思います。特に、自分の傾向として、上司などの声の大きい人の意見に流されやすいため、「イシューは何か」を判断基準にしたいと考えています。 捉え方はどう? 「イシューからはじめよ」を以前に読んだことがありますが、十分に理解しきれず、目的に対する消化不良が残っていました。しかし、特にWeek5の内容では、非常に分かりやすく業務に活かしやすい形で解説されており、具体的に自身の業務に当てはめて考えられるようになったと感じます。問い続けているうちに、「そもそも問題の捉え方が違った」と気づくこともあるでしょう。最初に立てた「イシュー」に固執せず、柔軟に考える習慣もつけたいです。 どんな課題がある? チームや自身の目標を立てる際には、現状の課題を抽出する段階で役立ちます。たとえば、不適合業務が発生した場合の原因分析や改善方策を考える際、また優先順位をつける判断基準としても活用できます。具体的には、以下の点を意識しています: どう具体化する? まず、チームや自身の目標を立てる際には、現状に対し「何が課題か」と問う癖をつけることが重要です。日々の業務でその意識を持ち続けることが大切です。ある課題Aが見つかった場合、その根本原因を探りより具体的な課題の抽出を心掛けることが必要です。抽象的な課題は抽象的な目標を生みやすく、それでは評価が難しいため、具体性を持たせることが重要です. どう原因を探る? 次に、不適合業務の分析や改善方策を考える際はさまざまな角度から原因を分解して考えます。「○○を実施していたらミスは発生していたか?」と仮説を立てて検証したり、固定概念にとらわれず「対」や「組み合わせ」を意識し、複数の原因がある視点を持ちます。改善策も具体的で評価できるものを考えることを大事にしています. どれを優先すべき? 最後に、業務の優先順位をつける際には、難易度や影響力から今何をすべきかを判断することを心掛けています。このようなアプローチを通じて、より論理的で効果的な業務遂行を目指したいと考えています.

データ・アナリティクス入門

ナノ単科で見つける問題解決の鍵

どう進める? 問題解決のプロセスでは、ステップごとに考慮し、解決の基準を言語化し、数値化して、関係者内で合意を得ることが重要です。具体的には、問題の明確化(What)、問題箇所の特定(Where)、原因の分析(Why)、施策の立案(How)という流れで進める必要があります。あるべき姿と現状のギャップを定量化することも求められます。このギャップには、正しい状態に戻すための問題解決と、ありたい姿に到達するための問題解決の2種類があります。 どう区別する? また、MECE(もれなくダブりなく)に基づいた分け方での問題の区別が重要です。施策の検討においては、ロジックツリーを用い、施策案を作成し、ファクトに基づく評価基準で絞り込むことが必要です。さらに、複数の切り口を検討する準備をすることが大切です。 分析はどう? 定量分析には5つの視点があります。具体的には「インパクト(全体への影響度合い)」、「ギャップ(目標との比較)」、「トレンド(時間軸での把握)」、「ばらつき(集中、均一)」、「パターン(外れ値や変曲点の活用)」があります。特に外れ値については、積極的にビジネスに活用する視点が新しい考え方です。 数値はどう見る? 案①「正しい状態に戻すための問題解決」では、年度目標未達が具体的な問題であり、KGI(人数・収入・営業利益)やKPI(Web流入数、CVR、CTR)が定量化されています。やるべきことは、販売チャネル別の数値把握、変数分解の可視化、定量分析の5つの視点で再検証を行うことです。具体的には、販売チャネル別の人数・収入・利益を再検証し、優先順位を設計し、施策を可視化します。 組織はどう整える? 案②「ありたい姿に到達するための問題解決」では、来年度の組織編制が具体的な問題として挙げられています。計画人員やグループ数が具体的に定量化されており、現状の可視化、中長期的なトレンド把握、目標設定が必要です。具体的には、各課の強みや啓発点の洗い出しを行い、組織の現状の業務が将来の目標に向けて十分であるかを評価し、不足もしくは不要な業務を見定めます。 まとめはどうする? このように、問題解決のステップとMECEなどの手法を用いて、具体的な解決策を導き出すためには、論理的で整理されたアプローチが不可欠です。

「考え」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right