データ・アナリティクス入門

解決策を見つける真のプロセス学習

問題解決への焦りはなぜ? 何か問題が発生すると、「すぐにどうすればよいか?」と考えてしまうことは、私自身にも心当たりがあります。なぜそのような思考になるのかを考えると、問題を早く解決したいという焦りや、楽に解決したいという心理が影響しているのだと思います。しかし、こうしたアプローチは直感に頼りすぎるため、必ずしも良い結果を生むわけではなく、改めてこのことを認識しました。 まずは、問題を正確に定義することが重要です。そして、「その問題はどこで発生しているのか?」「なぜ起こっているのか?」「どのようにすれば解決できるのか?」というステップを踏むことで、直感的な解決策よりも、より高い確率で適切な解決に繋がることを理解しました。 過去の対策とその反省 過去に、不具合が頻繁に発生するシステムがあり、そのとき私は「すぐにどうすればよいか?」を考え、対策を講じていました。具体的には、エンジニアの責任感を高めるために定期的に1on1を実施し、細部まで仕様を決めて実装の指示を出す、さらに実装とテストを別の担当が行うようにしていました。しかし、それらの対策を実施しても、不具合が改善されることはありませんでした。根本的な原因を特定しないまま対策を講じていたことが理由だと考えます。 問題の本質を捉え、「その問題はどこで発生しているのか?」「なぜ起こっているのか?」「どのようにすれば解決できるのか?」をしっかり分析することが重要です。そうすれば適切な解決策が明らかになり、問題が減らせるかもしれません。 効果的な解決策を学ぶプロセス 今回、より高い確率で適切な解決策を見つける方法を学ぶことができました。学んだステップを実施する際に、漏れや重複があると効果的な対応ができなくなることも認識しました。しかし、「問題を早く解決したい」という焦る気持ちや、「できるだけ楽に解決したい」という心理が強く働くと、再び「すぐにどうすればよいか?」と考えがちになるかもしれません。 最初は、課題解決に時間がかかることもあるかもしれませんが、まずは今回学んだ方法を実践し、継続することで問題解決の精度とスピードを高めていきたいと思います。

データ・アナリティクス入門

原因探索で拓く学びの未来

なぜプロセスを分解する? WEEK05「原因を探索する」では、まず一連のプロセスを分解して、各段階の転換(例:表示からクリック、クリックから体験レッスンへの導線)について整理する手法が紹介されていました。次に、問題の原因を探るために、企業戦略だけでなくそれ以外の要因も視野に入れる「対概念」の考え方が示され、幅広い視点での分析が求められていることが分かりました。 どうして要因に注目する? また、原因探索の際には、コストやスピード、意思疎通といった項目を重要度に基づいて重み付けし、最もインパクトのある要因に注力することが提案されています。さらに、少ない工数でかつリスクを抑えて改善を実施できるA/Bテストによるランダム化比較実験の実施方法も取り上げられ、実践的なアプローチとして評価されていました。加えて、ファネル分析により、ユーザーの行動プロセスを段階ごとに可視化し、どこでユーザーが離脱しているのかを実数と比率の両面から明らかにする手法も理解できました。 この事例はどう見る? 一方で、筆者自身が携わる自動車部品メーカーの事例では、採用ファネル管理表の作成が依頼されながらも、実際の元データが分散・乱雑な状態にある現状が語られていました。採用プロセスの各段階(応募者数、書類選考、面接、内定)の実数と割合を把握し、Excelやグラフ化ツールを使って直感的に状況を捉え、進捗管理やボトルネックの特定、採用プロセス全体の効率化と品質向上を目指すという目的が明確にされています。 なぜデータ整備が必要? そのため、まずは不要なデータの削除、重複データの統合、欠損データの処理、書式や値の統一など、元データの整備に着手する必要があります。加えて、着手前には「なぜ採用ファネル管理表が必要か」を改めて検討し、採用業務全体に問題がないか、他の角度から問題が発生していないかを確認する重要性が強調されていました。 分析の重要性は何? 今回の学びを通して、分析の基本プロセスである「what, where, why, how」を行き来しながら、各ステップにしっかり向き合うことの重要性を改めて認識することができました。

クリティカルシンキング入門

問いを立てる力で見抜く本質

クリティカルシンキングの核心とは? クリティカルシンキングで最も重要なのは「問い」に関する部分です。まず、目の前の出来事が「問い」なのかに気づくこと、認識することを大切にしたいです。 正しいイシューの特定方法 起こった事象に対して「問い」を立てるのか、それとも事象が起こる前の部分に「問い」を向けるのかによって、アウトプットは大きく変わります。これまで学んできた「考えること」「分解すること」が重要で、本質を見抜くことが求められます。 基本戦略やセオリー、本来正しいはずの理論や手法も、特定した「イシュー」が間違っていれば、悪手になることがあります。「イシュー」は常に変化するため、定点観測や分析を通じて追い続けることが必要です。局面ごとに最適な「イシュー」を導き出すことが求められます。 問いの共有が鍵となる 「イシュー」を特定するためには、「問い」から始め、問いを残し、問いを共有することが重要です。まず疑問文の形にすること、具体的に考え、過度に壮大にしないこと、一貫して「イシュー」を抑え続けることが求められます。 自身に対して「問い」を立てる際は、的外れな方向に進まないようにし、立ち止まることや「問いを残すこと」を意識したいです。 具体例を視覚化する効果とは? また、基本的な「き」に立ち返り、分解を行うことが大切です。具体例を視覚化したり、多角的に見るためには図などを用いることが有効です。 イシューを見極める場面とは? 「イシュー」を特定する場面としては、業務改善や組織・チームの改善、営業戦略の立案時、さらには自身のタイムマネジメント不足に対処する際があります。目の前の課題に気づき、問いを起こすことができるかどうか、常に気付きのレベルを高く保つ必要があります。そのためには学習や自己啓発を続け、引き出しを増やし続けることが重要です。具体的な行動や取り組み姿勢として、自らをそうした環境に置き続けることが必要です。 最後に、「イシュー」を特定する際に「問い」を持ち続けるために、自分にとって視覚化が重要だと感じました。ソフトウェアの活用などを通じてこれを実践していきたいと思います。

データ・アナリティクス入門

結果から逆算!あなたの成長戦略

問題解決はどう進む? 問題解決の方法として、「問題をステップに分け、結果(アウトカム)から逆算して分析する」アプローチは、限られた時間内で根本原因を明確にし、的確な打ち手を導くために非常に再現性の高い手法です。まず、期待する成果と実績値との差分を定量的に示すことで、組織内で認識を統一し、議論を「ズレの大きさ」に集中させます。次に、売上や費用などの成果指標を構成要素ごとにブレークダウンし、測定可能なKPIに紐づけることで、どの要因がどれだけの影響を及ぼしているかを明確にします。 分析はどこから始まる? 続いて、結果側から検証する「バックキャスティング」の手法を用い、大きく乖離している指標から原因を順次掘り下げていきます。得られた要因に対し、具体的な仮説設定とデータによる検証を行い、優先度の低い仮説は省くことでリソースの無駄を防ぎます。最終的には、検証済みの根本要因ごとに、効果と実行容易性を考慮したマトリクス評価に基づき、短期および中長期の施策を整理してアクションプランに落とし込むことで、関係者の合意形成と継続的な改善につなげることが可能です。 損益分析で何が分かる? また、事業別の損益実績表をもとにした問題解決にも、この「結果から逆算し要素を分解する」思考法は非常に有効でした。各事業の利益ギャップを数値で可視化し、売上要因や費用要因をツリー化して寄与度を算出することで、インパクトの大きい項目を即座に特定することができました。さらに、事業横断の共通課題と個別事業の固有課題を切り分け、優先順位を明確にした改善策を示すことで、部署間で共通のフレームで議論ができ、PDCAサイクルのスピードも向上しました。 改善策はどう組み立てる? 今後は、四半期ごとに提供される事業別の詳細データを活用し、売上、費用、各KPIを要素分解することで目標との差分を定量化し、根本原因の特定を進めます。その上で、次の四半期において改善効果が大きい施策(価格見直し、顧客セグメント別プロモーション、コスト構造改革など)を優先順位付けし、スケジュールと責任者を明確にしたアクションプランを提案していきたいと考えています。

戦略思考入門

選択と集中で未来を切り拓く方法

定量だけで良いの? 企業で働く私たちにとって、企業方針に沿った売上と利益の追求がビジネスの本質だと考えています。しかし、定量的な側面だけで意思決定を行うのは不十分で、多面的な視点から評価し、定量情報と定性情報を組み合わせることで、最適な意思決定を行う必要があります。その判断が正しかったかは実行後の結果からわかるため、短期間での振り返りと必要に応じた修正が重要です。 何を優先すべき? 「取捨選択」や「選択と集中」を常に意識していますが、改めて重要なのは、何を優先すべきかに注力することです。時にはビジネスの慣習に囚われず、思い切って無駄を省くことの重要性を再確認しました。期の節目には活動を振り返り、評価が厳しいものについては、その継続や中止をプロとコンスで整理してみることも良い方法だと思います。 具体的な施策は? 最近の具体的な捨てる施策としては、2024年10月から一時的に自社製品単体でのウェビナー開催を中止しました。顧客獲得が鈍化し、稼働対効果や費用対効果が合わず、メンバーのモチベーションも低下したためです。代わりに、複数の製品を組み合わせたセミナーイベントを企画し、顧客にとって魅力的で価値あるコンテンツを提供していきます。 新たな接点を見つける? また、リアルセミナーでは、顧客と営業担当との新たな接点を作る目的を設定し、単なる顧客獲得にとどまらないゴールを目指しています。PDCAサイクルを回しながら、必要ないものを捨て、継続すべきものや改善が必要なものを見極めて取り組みます。 今後の計画は? 年末を迎えるにあたり、チームメンバーには現在の業務を見直させ、過去の延長にある業務を棚卸しするよう指示し、2025年度からは取捨選択した新たな活動に取り組む予定です。2025年1月から実施する新たな代替策の成果を、稼働対効果や費用対効果、顧客獲得や売上の視点から評価し、それを2025年4月からの新しい活動方針に活かしていきます。そのため、管理者と中期的視点で戦略を練り、ゴールを設定し、2025年3月までにチーム全体に浸透させる計画を進めています。

クリティカルシンキング入門

問題解決の秘訣:イシューを特定せよ

どの問題から解決すべきか? 問題があると、複数の解決すべき課題を同時に考えてしまい、何から着手すればよいか分からなくなることがあります。しかし、問題を分解し、「今ここで答えを出すべき問い(イシュー)」を特定して、その解決策をまず考えることが大切です。例えば、某飲食チェーン店では、客数の増加に取り組んでから単価を上げるための施策を考えた結果、成功を収めました。もし逆の順序で進めていたら、客足が遠のく可能性がありました。 イシューを特定するポイントは? イシューを特定する際には、次の三点に気を付けるべきです。まず、「問い」の形にする(疑問形)。次に、具体的に考える(壮大すぎる問いにしない)。最後に、一貫してイシューを押さえ続ける(話がそれないようにイシューを何度も確認する)。 業務効率化の鍵はどこに? 業務効率化を提案する際には、まず効率化を図るべきイシューを特定し、それをチーム内で共有します。これにより、何を根本的に解決したいのかを全員が認識し、効果的な方法を見出すことが可能になります。例えば、時間がかかっている業務がある場合、1点に集中して効率化を図ると、別のところで時間がかかってしまうことがあります。これを防ぐためにもイシューの特定と共有が必要です。 問い合わせ増加への対応策は? また、日々の業務改善や問題解決には、具体的なイシューを見逃さないことが重要です。たとえば、ある問い合わせが例年より増加している場合、その原因を探るために情報の掲示方法や他の根本的な問題を検討する必要があります。普段より対応件数が増えていると感じた場合も、その違和感を無視せず、根本的な問題を特定し、それを解決する方法を考える時間を作ることが求められます。場合によっては、同じような問い合わせに対する対応時間が短縮されるかもしれません。 チームにおけるイシュー共有の重要性 常にイシューを意識し、その解決策を探る姿勢を持つことが、業務の効率化や改善につながる重要なポイントです。イシューを共有することで、チーム全体が同じ認識を持ち、一丸となって問題解決に向かうことができるのです。

クリティカルシンキング入門

思考の偏りを越える新たな視点の旅

クリティカル・シンキングとは? クリティカル・シンキングを効果的に身につけるには、まず自分や他人の思考に潜む「偏り」や「制約」を意識することが重要です。クリティカルに考えるというのは、自分の思考の偏りや制約を認識し、それを乗り越えるための「もう一人の自分」を育てることとも言えます。その際、「視点を変える」「視座を上げる」「視野を広げる」という三つの視が思考の制約を取り除き、思考を広げる助けになります。 思考を広げるには? また、思考の偏りを防ぐためには、ロジックツリーのようなツールを活用し物事を「分解」することが求められます。客観的で論理的な思考力は、「頭の使い方を理解する」「他者とディスカッションを重ねる」「反復トレーニングを行う」といったプロセスを通じて強化されていきます。クリティカル・シンキングとは「適切な方法で、適切なレベルまで考えること」であり、常に目的を意識して自他の思考の癖を前提に、本当にその答えで良いかを問い続ける姿勢が求められます。 教師としての挑戦は? 私の取り組みとしては、会議でのファシリテーションを通じて納得感のある意思決定を導いたり、部下のコーチングを通じて考えを広げ深めてもらうことも考えています。また、生徒をより良く理解し、成長に導く教師としての生徒指導や、目的に対してより効果的なカリキュラムを策定することも重要です。保護者対応においても、保護者の思いを正しく理解し、共に納得のいく解決策を考えるよう心掛けています。また、授業計画や学校行事計画と実施においては、生徒育成目標に照らして改善を検討しています。 スキルを磨くためのステップは? さらに、ロジックツリーを用いて論点を可視化し、検討しやすい形にしてディスカッションすることも取り入れています。いきなりクリティカルには考えられないので、できる限り他者とのディスカッションを行い、反復トレーニングを積み重ね、少しずつ成長していくことを目指しています。その過程で、積極的に失敗し、知識ではなく「スキル」として無意識にクリティカル・シンキングをできるレベルに達したいと思っています。

戦略思考入門

顧客視点で磨く、新たな価値提案への道

学び直す顧客価値と持続可能性 今週の学習では、「顧客価値」と「持続可能性」の重要性について再認識しました。特に、私はこれまで希少性や付加価値に注目してアイデアを考えていましたが、「顧客にとって本当に価値があるのか」という視点が欠けていることに気づきました。さらに、顧客視点で競合を特定するのは非常に難しい課題だと感じました。従来の市場だけでなく、デジタルトランスフォーメーション(DX)の進展により、全く異なる分野からの代替品が競合となる可能性もあります。このような環境の変化を捉えるためには、広範な市場にアンテナを張り巡らせ、常に最新の動向を把握することが必要だと学びました。この気づきを活かし、今後は顧客視点を意識した仮説検証を重ね、具体的な価値提案を磨いていきたいと思います。 SI業界における持続可能性の課題は? SI業界における「持続可能性」の重要性も改めて考えさせられました。特に、技術の進歩により、かつては差別化の要因となっていた技術やサービスが他社にも容易に模倣される現状に直面しています。この課題に対処するには、最新の技術を追い続けると同時に、既存の強みを活かした独自の価値提案を作り出す必要があると感じました。また、VRIO分析は非常に有用であり、まずは自社について実施してみたところ、組織の観点が弱いという課題を認識しました。今後はチームメンバーとともにVRIO分析を実施し、他の視点を取り入れることで新たな強みや未認識の課題を発見したいと考えています。 新技術導入のための戦略は? 自社のサービス開発の場面では、新技術を導入する際、その技術がただの流行ではなく、顧客にとって長期的な価値を生み出す持続可能な競争優位性を持っているかどうか、導入前にプロセスを強化したいと思います。また、新技術分野やDX活用事例など、日々の情報収集の重要性を再認識し、セミナーへの定期的な参加や業界レポートの読み込みを今後も心がけていきたいです。競合他社との差別化ポイントを明確にする取り組みを進め、VRIO分析で得られた洞察をもとに自社の競争優位性を高めるための改善策を検討していきます。

データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

クリティカルシンキング入門

多角的思考で開く未来への扉

自分の解釈は正しい? 「考えやすいこと」「考えたいこと」を、自分の都合のいいように捉えてしまうという点が、とても印象に残りました。相手の話をきちんと聞いているつもりでも、自分に都合のいいように解釈してしまっていたと気づき、今後の日常の中で意識して改善していきたいと思いました。 本来の『クリティカル』は? また、「クリティカル」という言葉を、単に否定的な態度ではなく、物事を多面的に考えるための姿勢として理解できたことに感動しました。これまでの自分の考え方に対して、「本来の意味」を知ることができ、新たな視点が広がりました。 3視をどう見る? さらに、「視点・視座・視野」の3つの視を意識することで、思考の広がりが大きく変わると実感しました。特に「もう一人の自分を育てる」という考え方は、幽霊のように自分の行動を俯瞰するイメージにつながり、感情に流されずに冷静に物事を見るための有効な手法だと感じました。今後、意識的に活用していきたいと思います。 演習の狙いは? 演習問題として、ある命題を自社に置き換え、スタッフとのミーティングでワークとして取り組んでみようと思います。「視野」の観点から「人間とは限らない」という発想を試すことで、意外なアイデアや発見があるのではないかと期待しています。また、ロジックツリーやチャンク分解を用いて、様々な切り口から課題にアプローチする考えも、今後の業務の一環として挑戦してみたいと考えています。 プレーの真意は? さらに、昨日の講座で学んだ内容を活かし、プロゴルファーのある選手が大舞台で見せたプレーについて、「なぜあの一打だったのか」「あのプレーに見るクリティカル・シンキング」といったテーマで深掘りできるのではないかと、考えながら期待と興奮を感じています。 自省は十分か? 最後に、常に自分を批判的に捉え、「本当にそれでよいのか?」と問いながら、思考を縦横に広げる習慣を身につけていきたいと思います。先入観に流されず、相手の本質に迫るための質の高い問いを立てることを意識し、多角的な視点から自分自身を振り返るよう努めていきます。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。
AIコーチング導線バナー

「改善 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right