データ・アナリティクス入門

共通認識が導く納得の意思決定

なぜ納得できない? これまでのGAiLでは、解説を読むたびに納得感を得られる部分が多かったのですが、今週はどうしても納得できない点がありました。設問3のデザイン変更の方法案について、解説では「コスト」「スピード」「意思疎通」に点数を付け、その結果として最適なものは「案3」とされていました。しかし、私が認識していた各指標の点数が異なっていたため、別の案を回答してしまいました。 共通認識は必要? この経験から、意思決定支援を行う際には、分析結果に基づいて「How」を考える前提として、共通認識(認知の歪みがない状態)を持つことが非常に重要だと感じました。たとえ分析結果から具体的な手法が導かれたとしても、共通認識が欠けていれば相手に納得感を与えるのは難しく、実際の実行段階で問題が生じる可能性があります。そうした意味で、仮説をしっかりと研ぎ澄ますことが大切だと理解しました。 A/Bテストはどう見る? A/Bテストについては、ダイレクトリクルーティングにおけるスカウト送付の場面で有用と考えています。たとえば、①スカウトメールの件名、②本文、③添付の求人票といった要素で比較検証を行う方法が挙げられます。一方で、各グループ間の介入の違いはできるだけ絞る必要があるため、比較対象が不必要に増えないよう、明確な仮説に基づいて取り組むことが求められます。 どう候補者を絞る? また、ほとんどの場合、データサイエンティストという職種名で求人票が作成され、スカウトメールが送付されているため、まずは候補者を①データサイエンティストとしての経験の有無と、②データサイエンティストを希望しているかどうかの2点で分類し、返信率への影響を検証していきたいと考えています。

戦略思考入門

フレームワークで視野を広げる学びの旅

差別化の学びは何? 差別化を考える際に特に印象に残った学びを紹介します。 フレームワークは何で? まず、フレームワークを用いることの重要性を挙げます。マクロからミクロまでの広い視野で細かく分析するには、フレームワークが欠かせません。フレームワークを使用することで、見落としを防ぎ、思考のバイアスを取り除き、新たな気づきを得ることができます。 顧客視点はどう? 次に、顧客視点で考えることの重要性です。競合が行っていないことに目を向けがちですが、顧客が喜ぶような差別化をしなければ成功しません。顧客のニーズを何度も考え抜く粘り強さが必要です。 模倣防止は可能? さらに、他社に模倣されない施策を講じることが求められます。すぐに模倣されてしまう施策は、あっという間にコモディティ化してしまい意味がありません。自社独自かつ模倣が困難で、長期的な継続が可能な施策を打ち出すことが重要です。 過去とどう向き合う? バックオフィスにおいては、競合との差別化ではなく、自分たちの過去との差別化を考える必要があります。業務効率や業務品質、過去のクレームなどを分析して課題や実績を洗い出します。顧客から直接ニーズを得たり、現状のリソースから実現可能な施策を考えたりします。そして、その実現に向け、皆で話し合いながら意思決定を行い、実施内容を検討します。集合知の活用が鍵となります。 実践はどう進める? 具体的な実践例としては、業務上フレームワークを使う機会が少ない場合でも、適切な場面では必ずフレームワークを活用し、自己の視座を広げる努力をします。また、同じ部署の仲間を競合と捉え、自分にしかできないことで自身を差別化することも一つの方法です。

データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。

アカウンティング入門

数字が語る経営の真実

売上との関係はどう考える? まず、費用を評価する際は絶対額ではなく、売上との関係で捉えることが大切です。具体的には、原価率は「原価 ÷ 売上」、販管費率は「販管費 ÷ 売上」といった割合で考えることで、数字の意味がより明確になります。 費用の種類は何が違う? 次に、原価と販管費の本質的な違いを理解する必要があります。原価は材料費や仕入れにかかる費用を指し、販管費は人件費、家賃、光熱費、広告費などが含まれます。これらを混同すると、原因分析が不正確になる恐れがあります。 売上構造の仕組みは? また、費用面だけでなく、売上構造にも注目することが重要です。具体的には、客単価、客数、回転率、営業時間などの要素を把握することで、どのように売上が形成されているかを理解できます。費用と売上の両方を合わせて分析することで、より正確な原因究明が可能になります。 業態の特徴をどう見る? さらに、業態の特性をPLに反映させることも欠かせません。たとえば、セルフサービスの場合は人件費が低く、小規模店舗の場合は光熱費や維持費が抑えられるといった特徴を、各事業の費用構造に結びつけることが求められます。 収益改善のポイントは? このような視点は、提案書や研修設計において、費用構造を的確に見極め、顧客の収益改善ポイントを示すために非常に有効です。また、人事施策のROI評価においても、原価、販管費、売上構造のいずれに影響が出る施策なのかを明確に説明できるようになります。最終的には、顧客企業のPLを割合で読み解き、粗利や販管費の課題箇所を正確に特定することが可能となり、与件情報を業態特性とPL構造に翻訳してロジックの強化につなげることができます。

データ・アナリティクス入門

4つの視点が導く成功のカギ

講義で何を学んだ? 今回の講義では、課題の把握と改善プロセスについて学び、問題を「何が(What)」「どこで(Where)」「なぜ(Why)」「どのように(How)」の4つの視点から捉える重要性を再認識しました。特にA/Bテストを通じて、異なる施策を比較検証することで、効果的なマーケティング戦略を導き出す手法を理解できたことが印象的でした。また、仮説を立てた上でデータを収集し、検証と改善を繰り返す思考サイクルにより、日常に即したデータ分析力を鍛えることができたと実感しています。 チームでどう連携? また、チーム全体で納得感を持って課題に取り組むためには、課題解決のステップを着実に踏むことが不可欠であると感じました。例えば、アンケート結果から要望を読み取る際には、根拠となるデータを明確に示すことが効果的であるという点や、研修の理解度チェック問題で正答率が低かった場合には、単に理解不足と結論付けるのではなく、解答プロセスを丁寧に分解して検討する重要性についても触れています。各要因を切り分けて検討することで、真の原因を見出すことが可能となると理解しました。 多角検証の意味は? 「What」「Where」「Why」「How」のステップを意識することで、問題解決に向けた思考がより整理され、課題特定時の統一感を保つことが大切だと気づかされました。仮説立案においては、一面的な見方に偏らず、多角的なアプローチで検証する方法の有効性を実感し、検証段階では先入観にとらわれず、検証したい点以外の条件もしっかりと統一されているかを確認する重要性を学びました。これらの学びを今後の業務に活かし、より深く課題に向き合っていきたいと考えています。

データ・アナリティクス入門

仮説が照らす学びと挑戦

仮説の意味は何? 仮説とは、ある論点に対する仮の答えを意味します。仮説を立てる意義としては、検証マインドを高め説得力を増すこと、関心や問題意識をより明確にすること、物事の進行スピードを早めること、そして行動の精度を向上させることが挙げられます。 複数仮説の意義は? また、仮説を考える際には、複数の仮説を同時に立てて決め打ちしないこと、そしてその仮説同士が異なる切り口で網羅的に考えられていることが重要です。さらに、フレームワークを活用することで、自分の思考の幅を広げ、複数の視点から仮説を検証する機会が得られます。この点では、各仮説の正しさそのものよりも、いくつかの異なる切り口を持つことが非常に大切です。 検証方法はどう? 仮説の検証方法としては、既存のデータを活用して確認する方法や、新たにデータを収集して比較検証する方法があります。比較のためのデータ収集においては、都合の良い情報だけに偏らないよう注意する必要があります。 営業での仮説は? また、仮説は営業の現場においても有用に活用できます。例えば、売上の進捗をマネジメントする上で、現状の売上に対して問題はどこにあるのか、原因は何か、そしてどのように解決すべきかといった点を明確にするために、問題解決の仮説は大いに役立ちます。こうした仮説をもとに施策を考え、実行し、その結果をデータをもとに定期的に分析することで、施策の軌道修正を行い、着実な成果を導くことが可能になります。 フレームワーク活用は? 最後に、従来は活用機会が少なかったフレームワーク、たとえば3C分析や4P分析を実際にどのように業務に取り入れているのか、その事例についても知見を得たいと考えています。

戦略思考入門

やる意味を問い直す戦略

営業活動の真意は? 今週学んだことの中で最も印象的だったのは、営業活動が単に売上を追求するだけではなく、そこでかかる手間や時間を考慮しなければ効率的な成果に結びつかないという点でした。売上という指標はわかりやすいものの、ROIの視点は営業に限らず、どの業務にも共通する重要な考え方であると実感しました。 戦略の選択基準は何? また、戦略思考においては「何を選択し、何を捨てるか」が大切だと理解しました。選択の基準は一つではなく、利益、将来性、関係性、手間など複数の要素を組み合わせる必要があります。これにより、日々の業務においても「過去から続けているから」や「とりあえずやってみる」という理由だけで作業を維持するのではなく、その目的と効果を見直すことが、より戦略的な働き方につながると感じました。 リアルタイム更新は必要? 私の担当する資源価格の収集と分析では、日々の価格情報の取得が重要である一方で、最終的な評価は月平均や年平均に基づいて行われます。そのため、すべての更新情報をリアルタイムに取得する必要が本当にあるのかを疑問に思うことがあります。従来のやり方に固執せず、業務の目的に沿って「やる意味があるか」を問い直す姿勢が求められると感じました。 戦略は自分で変えられる? また、今回の演習を通じて、戦略思考をどこまで自分の裁量で変えられるかについても考えさせられました。『捨てるを選ぶ』というテーマの中で、現場で自分が変えられる部分と、組織文化など個人では対処しきれない部分の線引きが重要であると感じています。設問や解説の意図が必ずしも一致しないのは、戦略思考が立場や価値観により実践の切り口が変わるからなのかもしれません。

クリティカルシンキング入門

データを解剖して見えた営業の新展開

数字の活用法は? 数字を味方にするためには、分解して解像度を上げることが重要です。数字をうまく利用することで、問題箇所を特定しやすくなります。迷った時には、とにかく手を動かすことが肝心です。 データ加工の工夫は? まず、数字の加工に関しては、与えられたデータをそのまま使用するのではなく、自分で追加の欄を設ける工夫が必要です。仮説を持ち、どの単位で分解すると有益かを考えることがポイントです。 切り口はどう考える? 数字を分解する際の留意点としては、切り口をMECE(Mutually Exclusive, Collectively Exhaustive)で考えることが挙げられます。一つの傾向が見えても複数の切り口で他に傾向がないか探すことが重要です。傾向が見えなくても、それはそれで意味があります。 強みと弱みは? 営業成績の振り返りにおいては、担当者の強みや弱みを把握すること、代理店内の強みや弱みも同様に把握することが肝要です。また、品質に関しても同様に、担当者や代理店の強みと弱みを理解することが求められます。 業務分担と数値は? 業務適正化には、月間スケジュールと週間スケジュールの策定、および業務の分担が含まれます。さらに、営業成績の振り返りでは、まずは活用していた数字が正しかったかの確認から始め、決まった期間で得られる数値を把握し、分解する項目を決定。そして、その項目をルーティンで確認することが重要です。 品質分析はどう? 品質の振り返りにおいては、定められた数値に対して新しい切り口を模索するために時間をかけることが求められます。業務適正化では、現状の分析と必要業務の確認が中心となります。

データ・アナリティクス入門

仮説で切り拓く未来の発見

仮説の意義は何? ビジネスにおける仮説とは、ある論点に対する仮の答えを意味します。重要なのは、正しい答えに決め打ちせず、複数の仮説を挙げることで網羅性を確保することです。仮説には「結論の仮説」と「問題解決の仮説」があり、時間軸によって過去の検証と未来の予測で内容が変わります。 仮説をどう検証する? 問題解決の仮説は、問題解決のプロセスに沿って、WHATからWHERE、WHY、HOWへと各要素に仮説を立てるものです。このアプローチにより、検証マインドが向上し、問題意識や改善点への気づきが促進されるという利点があります。 仮説は広く捉える? ゲイルを通して学んだのは、正しい答えに近づけようと意識するあまり、仮説の範囲が狭くなってしまう可能性があるという点です。思いつくままに仮説を列挙してみることで、仮説の網羅性や全体像が明らかになることを実感しました。また、数値を用いた費用対効果の分析手法も学ぶことができ、有用な気づきとなりました。 売上の原因を探る? 具体的な例として、売上分析においては、単価が低いことやコストが上回っていること、あるいは季節性の変動によって患者数が左右されるなど、さまざまな仮説が考えられます。これらの仮説は、結論の仮説として売上未達の要因を示すものと、問題解決のプロセスとして原因究明のための仮説として整理することが求められます。 仮説報告はどう? 毎週の売上数値進捗報告では、複数の仮説を設定し、その検証結果と合わせて報告することで、仮説立案のプロセスに説得力を持たせることが大切だと感じました。月末には、立てた仮説を通して得た気づきを言語化し、次のステップに活かす姿勢が必要です。

クリティカルシンキング入門

数字を味方に!分解力で成長する分析術

数字を味方にするには? 数字を味方にするには「分解」が必要であることを学びました。また、分解には複数の切り口で行うことが大切です。単純に機械的な切り口では、本当に欲しい結果が得られにくいため、定性的な仮説を持ちながら視点を変えつつ切り口を探すことが重要です。 手を動かすことの意義とは? 特に「まずは手を動かす」という点は感銘を受けました。やってうまくいかなければ、それは失敗ではなく有効ではなかったことがわかるというパラダイムは新鮮であり、大きな学びとなりました。 MECE手法で得られるものは? 手法としてMECEを活用することで、適切な分解に繋がることも学びました。「分解する」と一言で言っても、最低限の分解方法の知識がないと意味がありません。MECEの手法を学び、仮説を立てながら実践に移したいと思います。 キッチンカー分析にどう活かす? 現在、自社の敷地内に出店しているキッチンカーの売上傾向の分析を行っていますが、この分析に今回学んだことが役立つと考えています。今まではデータを機械的に分解し、データを集めて傾向を調べ、次の仮説を立てていましたが、そもそもの分解が正しいか疑問を持つところから始める必要があります。異なる切り口によって、より効果的な分解と分析に繋がるので、その方法を実践してみます。 AIとの協働で得られる発見は? 上記の集計しているデータを見直し、自分で立てた仮説とAI分析による切り口の提案を比較してみるつもりです。切り口や分け方を自分で考えると同時に、AIでもうまく提案させるようなプロンプトを工夫し、斬新な発見ができる方法を模索したいと思います。

データ・アナリティクス入門

データ分析で見つける新たな視点

分析プロセスの目的は? 分析は、目的に基づいて要素を分けて整理し、意思決定に活かすためのプロセスです。重要なのは、分析が迷子にならないようにすることです。目的を持ってデータを収集し、それに基づいて加工・分析を行うことが求められます。分析は比較となり、データの種類に応じた適切な加工法を使って意味を明確にすることが重要です。 視覚化手法をどう活用する? 視覚化の工夫も、分析の際には非常に役立ちます。例えば、n択の選択人数を割合で見る、全体に対する比率や割合を円グラフで表現するといった工夫が考えられます。推移の比較には縦棒グラフが適しており、要素間の比較には横棒グラフが効果的です。 仮説設定がなぜ鍵となる? 分析のプロセスで大切なのは、目的や仮説を明確にすることです。仮説をもってデータを収集し、加工して結果を導き出す過程で、なぜその分析を行うのか(背景)、そしてそのデータから何が言いたいのか(主訴)を明確にすることが鍵となります。また、仮説が誤っていると判明した場合は、分析の進め方や視点を見直し、正しい結論に導くことが必要です。 学んだことをどう実務に活かす? さらに、ライブ授業で学んだTIPSを実務に活かし、具体的なデータの可視化手法に取り組んでみることで、理解が深まります。質的データに関しても、名義尺度や順序尺度といった基本を学び、さらなる分析力を身につけてください。 このように、分析の目的やデータの加工法についてしっかり理解し、視覚化手法を活用することで、効果的な分析が可能になるでしょう。学んだことを実際のデータに適用し、実践を通じて、さらなるスキル向上を目指してください。

クリティカルシンキング入門

学びを深めるための分解術の秘訣

理解を深めるための分解とは? 物事を理解する際には、それを分解することが重要です。分解することで新たな視点が得られることがありますし、わからないことは必ずしも失敗を意味するわけではありません。むしろ、わからないことが明確になること自体が大きな成果です。また、物事をどのように分けるかによって、異なる理解が生まれることもあります。 MECEを使った効果的な分解方法 分解する際には、MECE(Mutually Exclusive and Collectively Exhaustive)を意識することが求められます。まずは全体を定義し、その上で足し算型、掛け算型、割り算型、またはプロセス型のどれに当てはまるのかを考えつつ分解していきます。 顧客データの多角的な分析 さらに、具体的なシーンにおいては、顧客の問い合わせやクレームの分析、データエラーの分析、顧客属性の分析、商品ごとのニーズ分析などが挙げられます。メンバーへのフィードバックや面接での思考プロセスのチェックもこれに含まれます。これらの情報はモニタリングダッシュボードの作成やrawデータの取得の切り口定義にも役立ちます。 フロー分割で問い合わせを深く分析 特に顧客の問い合わせの段階から注文に至るまでのプロセスは、フローを分けて考えると理解が深まります。このフローの中で、問い合わせのカテゴリーごとにさらに細かく分解することができます。例えば、問い合わせツールや新規顧客と既存顧客の違い、購入回数、法人と個人の区分、エラー項目、エラー後のコミュニケーション回数など、具体的に分けてみることで、多角的に分析することが可能になります。
AIコーチング導線バナー

「分析 × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right