戦略思考入門

集合知で描くSWOT活用の新視点

フレームワーク活用の理由は? フレームワークを知っているだけでは意味がありません。特にスタッフ部門では、直接的に活用できる場面は限られているように感じていました。しかし、具体的な活用ポイントや事例を学ぶことで、SWOT分析やその他のフレームワークも、読み替えや置き換えによって適用できる場面があるのではないかと考えるようになりました。 集合知はどう作用する? また、集合知の重要性も深く心に残りました。意見が食い違う場面は日常的にありますが、それを単なる困難と捉えるのではなく、多面的な認識が得られ、議論を通して考えが洗練され、抜け漏れの防止にもつながるというポジティブな側面に着目し、有難く享受していきたいです。 体制強化の再評価は? これから取り組みたいのは、現在の体制強化の進め方についてのSWOT分析を通じた再評価です。漠然と正社員を補充するだけでなく、効率と効果の両面で新たな気づきが得られるのではないかと期待しています。また、個々がプロとして働くことから、プロ集団として組織全体で取り組むというマインドチェンジも重要です。現状ではすべてをみんなでやろうとするのは難しいかもしれませんが、メンバーの負担を軽減し、集合知の重要性を訴えながら適切な雰囲気を作ることが必要だと考えています。これは長期的な課題かもしれませんが、戦略的に最短で進めることを目指します。 SWOT分析はどう機能? まずは自組織のSWOT分析を実施し、その結果を基に体制強化策の見直しを行いたいと思います。集合知を活かす組織づくりに向けては、この研修での学びや気づきを月次会議で共有することから始めたいです。また、私自身が「一緒に仕事をしたい」と思われるような人間性と振る舞いを心掛け、日々、明るく元気に取り組むことを意識していきたいです。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。

マーケティング入門

受講生の学びが未来を拓く瞬間

企業と候補者の調和は? 私は金融業界に特化したリクルーティング事業を展開しており、企業と転職希望者の双方のニーズを同時に満たすことが求められます。一方だけに偏るのではなく、双方がwin-winとなる関係を目指すことが、良いマッチングの実現につながります。 採用戦略はどう考える? そのためには、企業側が求める「経験」や「スキル」に加え、職場の文化にマッチし、即戦力として活躍できる人材を確保することが重要です。また、採用計画の充足や市場での評価のフィードバック、さらには専門的な転職サポートや他社の成功例・失敗例からの学びといった点も、企業の期待に応えるための大きな柱となります。 転職で自己実現は? 一方、転職希望者にとっては、転職を通じて自己実現を果たし、自分の才能や価値をより深く理解したうえで、適したキャリアパスを選択できることが重要となります。市場のニーズを踏まえ、選択肢を広げる提案が求められ、自分では気づかなかった新たな才能や可能性を発見する機会にもつながります。また、転職後のキャリアの発展や希望する企業への最終サポートも重要な要素です。 共有ゾーンの意味は? このように、それぞれのニーズの重なる部分―いわゆる「共有ゾーン」―を広げることが、企業にとって成果を上げる採用と、候補者にとって充実した転職の両立の鍵になると考えています。 マーケティングの本質は? さらに、マーケティングとセリングの違いについては、マーケティングの側面である分析や創造の部分をより具体的に理解したいと考えています。マーケティングの本質は、顧客に価値ある提供物を創造し、それを伝達・配達・交換する仕組みを作ることにあり、販売自体の必要性をなくすことを目的としているという考え方は、非常に興味深いと感じています。

クリティカルシンキング入門

切り口変えれば未来が拓ける

事象を分解する意味は? ある事象を理解するためには、まずその事象を細かく分解してみることが有用であると感じました。一つの視点だけでは捉えきれないため、複数の切り口から分解することで、より深い理解へとつながります。また、現在の切り口に安住せず、他の可能性を常に問い直す姿勢が、新たな発見に結びつくと考えています。ここで、MECE(漏れなく、ダブりなく)という原則を徹底することの重要性が改めて意識されます。もし切り口に漏れや重複があれば、事象を正確に捉えることが難しくなってしまうからです。 財務状況はどう分析する? このアプローチは、例えば顧客の財務状況を分析する際にも非常に参考になると思います。財務諸表であるB/S、P/L、C/Fを、複数の視点からチェックすることで、顧客の財務状態をより具体的に理解することが可能になります。また、顧客理解を深めるには、事業内容や流通構造、業界の動向、さらには競合との比較も欠かせません。それぞれの項目について、どの要素が利益率低下に影響しているのか、例えば原価率の高さや売上の低迷、その背景にあるコスト増加などを詳細に分析する必要があります。 未来策はどう見つける? さらに、物事を分解する手法は、現状の課題把握だけでなく、将来の解決策を検討する際にも役立つと実感しています。今後は、この分解の手法をより一層活用し、現在の理解を深めた上で、効果的な解決策を模索していきたいと思います。 具体的な取り組みとしては、5月中に少なくとも1つ、理想は2つ以上の業界について、業界に属する上場企業のIR資料や関連書籍を参考にしながら業界分析を行う予定です。その際、業界を単一の角度ではなく、複数の切り口で分析すること、そしてMECEの原則を意識して、学びを実践に結びつける機会にしたいと考えています。

データ・アナリティクス入門

データの見方が変わる!定量分析の魔法

定量分析の視点をどう活用する? 定量分析の5つの視点(1. インパクト、2. ギャップ、3. トレンド、4. ばらつき、5. パターン)を学びました。データを漫然と眺めるのではなく、これらの視点で見ることで効率的に示唆を得られると感じました。特に、平均値を取る際に「標準偏差(データのばらつき度合)」という視点をこれまで考えたことがありませんでした。同じ平均値でも「ばらつきがある」か「ばらつきがない」かでデータの意味合いが変わります。今後は標準偏差も併せてチェックしていきたいと思います。 データ比較時のポイントは? 売上やサービス利用者数などのデータを前年度と比較する際には、定量分析の5つの視点を意識して数字を見るように心がけます。また、特定月における新規受講者や解約者を年代別に分析する際、これまで表に落とし込むことは行っていたものの、グラフ作成は少なかったです。今後はヒストグラムなどのグラフを活用し、ビジュアルで傾向を把握できるようにしたいと思います。これはチームメンバーにも促していきたいです。 チームでの視点共有は? まずは、学んだことを言語化し、チームメンバーと共有することが重要です。データの分析もチームメンバーと一緒に行う際、「Aさんはトレンドがないか」「Bさんはばらつきがないか」といった具合に、各メンバーに特定の視点で見る役割を依頼するのも良い考えだと思います。これにより、チーム全体として5つの視点を網羅することができます。 グラフ化で何を検証する? 最後に、各月のサービス利用者の新規受講率や解約率のデータが表として存在していますが、まずは先月のものを目的に応じてグラフ化し、理解の速度や深度にどのような違いがあるのか、グラフから意味ある示唆を導き出しやすくなるのかを検証したいと思います。

マーケティング入門

売れる製品を見抜くための分析法の習得

イノベーション普及要因とは? イノベーションの五つの普及要因というフレームワークを通して、既存の製品やこれから開発する予定の製品について分析することで、何が売れるか、何が売れないかの要因を把握できることを学びました。また、ターゲットとするセグメントの顧客がどのような考え方をするのかを正確に理解することの重要性も学びました。 市場分析の重要性は? セグメントにおいて、自社が本当に勝てる市場なのかを分析することも重要です。ただ母数が多いだけでは意味がなく、多様化した市場の中で限られたリソースをどのように使って売上利益を最大化できるかを考える必要があります。さらに、ネーミングについても顧客が求めているものとのギャップが生じないよう注意する必要があります。 普及条件の適用方法は? 自社の製品や今後開発予定の製品を、イノベーション普及の五つの条件に照らし合わせて不足している要因を分析したいと思います。例えば、自分が担当している産業用コネクタにおいては、マーケットシェアが高いものと低いものがあります。それらを比較することで見えてくるものがあると考えます。 アジア市場での戦略は? 現在、攻めようと考えているマーケットがセグメント上正しいのか、本当に勝てる市場なのかを分析したいと考えています。具体的には、日本以外のアジア地区への拡販計画を立てているが、自社にとってそこが勝てる市場なのかをしっかりと分析したいと思います。 比較分析で見えるものは? まず、担当している製品におけるイノベーション普及の五つの条件がどのようになっているかを確認し、分析することが重要です。売れている製品と売れていない製品の比較を行います。次に、セグメント分けを行い、勝てる市場がどこなのかを改めて考え直す必要があります。

マーケティング入門

魅力的な情報伝達への挑戦

魅力を伝える方法とは? 顧客に情報を伝えることは意識していたものの、相手が魅力を感じる伝え方については深く考えられていなかったと感じます。他社との差別化を図るために設けた言葉が、結局顧客の魅力につながらなければ意味がありません。目的を見失わずに仕事をしたいと気付きました。 重要な学びの三つのポイントとは? この講座を受けるにあたり重要だと感じた点としては、以下の3つがあります。まず、素直に取り組むこと。今までの経験から生じるバイアスを持たず、講義や動画、他の参加者の意見を真摯に受け止める。そして、積極性を持つこと。さらに、目標や目的を具体的にイメージして取り組むことが重要です。プログラムが終了する頃にはマーケティングへの興味が増し、仕事に活用したい、他の人にも伝えたいという熱意を持って集中して取り組みたいと思います。 プロモーションでの新しい挑戦は? 仕事においては、新たに認知施策やプロモーションの手段を見直している時期ですので、データから独自のアイディアを出せる状態になりたいと思います。また、マネジメント向けのプレゼンやプロモーションのチャネル選択、方法の検討にもこの知識が活かせると感じています。魅力的に情報を伝えるために、他社や前例にとらわれずに考えることの大切さを再認識しました。さらに、顧客向けのアンケートを通じて、どこまで何が伝わり、魅力を感じてもらえたのかをヒアリングすることも心掛けたいです。 自信を持つためのステップは? まだ具体的なイメージは持てませんが、自信を持って業務に取り組めるようになりたいと思っています。同僚や上司にも納得感があり、有益だと感じてもらえる分析や新施策を展開できるように、マーケティングの考え方に基づいてシンプルに話ができるようになりたいです。

データ・アナリティクス入門

分析で見える明日のカタチ

分析の目的は何? 分析とは、物事を具体的に明確化し、より良い意思決定へ結びつけるための手法です。より良い意思決定を行うには、まず目的をはっきりと定め、その達成に向けた具体的な比較対象や評価基準を設けることが重要です。 比較の意図は? 目的に沿った比較対象を設定することで、分析結果の見せ方にもメリハリが生まれ、伝えたい意図を明確に示すことができます。データの比較やグラフの工夫により、情報を読みやすく、効果的に伝えることが可能となります。 事例の意味は? たとえば、人事部門におけるデータ活用事例としては、以下のような取り組みが考えられます。制度導入効果の検証では、退職率や従業員満足度を過去の実績と比較し、制度の効果を測ります。入職・退職の動向把握では、社内や業界全体のトレンドを把握することが重要です。また、配置や異動の最適化、研修やスキル管理、エンゲージメントの可視化といった分野でも、データを基にした分析が行われています。 退職率の分析は? 具体的に退職率の分析に取り組む場合、まず上司との認識を合わせ、分析の目的を明確にすることが必要です。目的としては、人材の流出抑制や制度改革の効果検証、さらには業界・社内の現状把握などが挙げられます。 比較基準はどこ? 次に、自社内の過去の実績や、制度変更前後のデータ、同業界・同地域・同規模における最新のトレンド、さらには年齢や勤続年数といった属性別の変動など、具体的な基準を設定して比較を行います。 伝達方法は? さらに、複数のグラフや推移グラフ、色付けやサイズ変更などを用いて、分析結果の意図をより明確に伝えることが求められます。このような取り組みを通して、目的に沿った分析を進めることが、より良い意思決定へとつながっていきます。

戦略思考入門

数値でひもとく戦略のヒント

勉強内容はどう感じ? 今週の実践演習では、非常に勉強になる内容が多くありました。最初に提示された表や設問の説明だけでは、どの顧客に注力すべきかが直感的に判断できませんでした。しかし、数値を活用して分析することで、選択すべき顧客が明確に浮かび上がってくる作業はとても面白かったです。 利益率の意味はどうなる? 今回は時間当たりの利益率にフォーカスしていましたが、分析の軸が変われば結果も大きく異なるため、あらかじめ会社全体の戦略として何を重視するかを決定しておくことが重要であると感じました。 軸指標はどう活かす? また、フォーカスした軸に関する指標を別途算出するという手法は、戦略における取捨選択が主目的ではなかったものの、これまで無意識に行っていたことでもあり、今後の戦略検討に活用できると実感しました。 提案と見積りはどうする? 例えば、新たなプロジェクトの提案や見積もりの段階では、コスト削減と機能向上のトレードオフに直面することが考えられます。その際は、以下のような具体的な行動を実践していきたいと思います。 (1) プロジェクトの要件を整理し、コスト削減と機能向上がトレードオフの関係にあることを明確にする。 (2) 効果の最大化、すなわちコストと機能のバランスを踏まえ、どちらを優先すべきかを判断する。 (3) コスト削減を優先する場合は、必要最低限の機能に絞り込む。 (4) 機能向上を優先する場合は、追加のリソースを確保し、顧客のニーズに応える機能を実装して満足度の向上を図る。 (5) プロジェクト終了後には、選択した内容とその結果を評価し、次回以降のプロジェクトへの課題や参考点を整理する。 以上の経験を踏まえて、今後の業務改善につなげていきたいと思います。

クリティカルシンキング入門

言葉が映す未来への一歩

ライブ授業は何を感じた? Week01のライブ授業の内容は、すぐには思い出せませんでした。人は忘れる生き物ですから、学んだ内容は定期的に見返すように心がけています。 言語化の効果はどう? この6週間で、言語化の難しさと、それを乗り越えたときに得られる効果に気づくことができました。言語化することで思考が見える化され、自分の理解度がはっきりするほか、考え方のBeforeとAfterが分かり、伝える相手への意識も高まります。こうした効果を実感できたため、今後も継続して取り組んでいきたいと考えています。 継続性の意味は? なお、こういったスキルは筋トレやダイエットと同じく、すぐに成果が出るものではなく、継続性が求められます。日々の業務においても、アンケート分析や会議での方策検討の際、全体を俯瞰して思い込みや決めつけを排除し、具体化と抽象化を意識することは重要です。問いを設定し、仮説を立てることで、効率的な分析を行うようにしています。 分かりやすさの秘訣は? また、メールや資料作成の際には、相手に伝えたいことや必要な情報をシンプルかつ的確に表現する工夫を重ねています。メッセージの言い回しや、表・グラフの見せ方にも意識を向け、誰にとっても分かりやすいものを作ることを心がけています。 振り返りで気づいた? 実践の場でこの学びが活かせるよう、定期的に振り返りタイムを設け、以下のスキル向上を目指しています。まず、日々の学びや気づきを具体的な教訓に変えることで、抽象化力とMECEな視点を養います。次に、思考や感情の言語化を通じて、整理された考えを構築すること。そして、継続的な振り返りにより自身の変化を確認し、不足している視点やスキルの改善に努めることで、学習習慣の定着を図っています。

戦略思考入門

捨てる勇気で掴む新たな可能性

どこを分析すべき? 客観的に情報を捉え、定量的に分析することは重要です。勝てるポイントを見極め、選択と集中を行うことで、効率的な資源配分が可能となります。このためには、高コスト・高品質・時間・労力・効率・利益率・回転率といった多方面からの分析が必要であり、どこに投資するのかを明確にすることが大切です。 優先順位はどうする? 「選択と集中」という考え方は、言い換えれば「捨てる勇気」を持つことにも繋がります。限られた資源を最適に活用するためには、何を優先し、何を後回しにするのかという優先順位を付けることが求められます。そして、何を捨てるべきかという理由を探し、その反対に捨ててはならない理由を考えることも、優先順位の明確化に役立ちます。 品質はどう選ぶ? 捨てることが良い結果をもたらす場合もあります。例えば、顧客が喜ぶと思って商品を過度に高品質にすることでコストがかかることがありますが、品質を少し落としても販売価格を下げることが顧客の望みである場合も少なくありません。 本当に改善できる? 人は習慣を変えることに抵抗を示す傾向があります。しかし、始めたことをやめる際には、それが最適な選択であることを確認できるようにすることが大切です。例えば、重複している定例シートの作成や、必ずしも必要ではないダブルチェック、意味のない定例業務にリソースを割く意味を再評価する必要があります。 効果はどこに現れる? 結論として、費用対効果や得られる結果を考慮しながら資源の投資先を決定し、冷静にリソースの分配先を選ぶことが重要です。そのためには、批判的な思考を持ち、無駄を見つけたときにはそれをやめてみる勇気を持つ必要があります。これらを客観的かつ定量的に考え、判断することが求められています。

データ・アナリティクス入門

小さな実験が拓く大きな未来

仮説はどう捉える? これまでの演習よりも多くのデータに触れる機会があったため、ただデータを見るだけではなく、まず「こういう仮説があるのではないか?」という視点を持って取り組むことが重要だと実感しました。また、仮説は一つに固執せず、他の可能性も網羅的に考えることで、思いつきに頼らないアプローチができると感じました。 PDF加工の落とし穴は? 一方で、PDFデータの加工には非常に頼りになる一面があるものの、誤認識により表の数字が間違うケースもあったため、過信せずに慎重に取り扱う必要があると痛感しました。 数字整理はどうする? ファネル分析とABテストは、どちらもすぐに実践できる手法として役立つと感じました。ファネル分析では、業務フローの数字が断片的にしか取得されていない現状を踏まえて、業務フローを整理し、必要なデータを集めてファネル化することが求められます。 仮説検証は進んでる? また、ABテストでは、うまくいっていない点に対して仮説を立て、比べるべき内容を明確にして、結果が確認できるデータを準備することが大切です。これらの手法を同時期にテストし、比較検証することで、より精度の高い分析が可能になると感じました。 分析の意義は何? さらに、なぜファネル分析やABテストが必要なのか、その意義を自分なりに言語化することも重要です。今週学んだ内容を整理し、データアナリティクスの重要性を前提として、具体的な提案にまとめる作業は大変有意義でした。 実践の意味は何? 最後に、実データに毎日触れてトライアンドエラーを重ねることが、さらなる改善点の発見につながると実感しました。これからも、日々の実践を通じて知見を深めていきたいと思います。

「分析 × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right