クリティカルシンキング入門

データ分析に革命を起こす秘訣

データ分析の効果的な手法とは? データ分析を効果的に行うには、仮説を持って実際にデータを操作し、その結果を視覚化することが重要です。分析の切り口を考える際には、概念(例えばWhen、Who、Howなど)を意識して、網羅的に考える必要があります。一見、経時変化がないように見える場合でも、その内訳を確認し、本当に変化がないのかを疑ってみるべきです。 業績分析と来年度対策に必要なことは? 年度末に向けては、今年度の業績分析と来年度の計画策定が求められます。そのために、明確な切り口を持ち、業績に関する分析をさらに深化させることが大切です。これまでは一度分析を行うとそれに満足して終わってしまいがちでしたが、今後は他の視点や可能性を常に探求する姿勢を持とうと思います。 多角的視点で分析するには? 業績に関連する分析には通常ストラック図を用いますが、組織全体で集約するだけでなく、四半期別、顧客別、担当者別、契約形態別など、様々な切り口から分析を試みると、従来見えなかった特徴や課題を明確にすることができるかもしれません。また、EXCELのPivotテーブルやPivotグラフを使いこなすことで、自分の意図するデータの可視化ができるよう、積極的に手を動かしていきます。

データ・アナリティクス入門

現場を解剖!数字と直感のコラボ

見えるギャップは何? データ分析では、目についた情報にとらわれやすく、都合の良い解釈に陥るリスクがあると感じました。しかし、What / Where / Why / Howの切り口で数値同士を比較し、実際の現場で何が起きているのか確認することで、あるべき姿と現状のギャップを明確にし、解決への道筋を意識することが大切だと学びました。 KPI設定の真意は? また、サイト分析におけるKPI設定では、ロジックツリーの考え方を活用して全体を俯瞰し、各階層に分解するMECEを意識したアプローチに新たな気づきを得ました。こうした手法は、課題解決や売上、集客の分析においても非常に有用だと考えています。 具体分析の切り口は? さらに、現在取り組んでいるECサイトのデータ分析では、感度の良い切り口を増やし、より具体的な分析を行いたいと思います。クライアントのサイト課題をあぶり出し、ロジックツリーに落とし込むことで、強化すべきポイントを整理する作業に役立てていくつもりです。 今後の施策は? 引き続き、現場の状況確認を踏まえながら、What / Where / Why / Howの視点とMECEを意識して分析を進め、課題解決に向けた具体的な施策を模索していきます。

データ・アナリティクス入門

仮説とデータで進む成長の一歩

データ分析の意義は? データ分析そのものが目的ではなく、What・Where・Why・Howの各ステップに沿って、イシューの設定、問題の特定、原因の分析、そして解決策の構築まで進めることの重要性を学びました。 課題解決の要点は? また、課題解決とは現状のマイナス面を正常に近づけるだけでなく、将来のありたい姿に向けた戦略を立てることも含まれている点が新鮮な発見でした。 なぜ提案が浅く? 内部監査の担当として実務を行う中で、課題の特定までは進むことができても、真の原因分析が困難で、改善提案が表面的になってしまうことが多いと感じています。今後は、原因をより深く掘り下げ、具体的な改善策を提案できるように努めたいと思います。また、提起する課題が現状の問題解消を目指すものなのか、将来のビジョンに向けたものなのかを明確に区別して提案できる力を養うことも目標にしています。 仮説検証のプロセスは? What・Where・Why・Howの各場面で仮説を立て、その仮説をデータ分析により検証するプロセスを確実に実行したいと考えています。データ分析だけに留まらず、その他の情報も収集しながら、より深い原因分析と効果的な改善提案ができるよう、引き続き努めていきたいです。

クリティカルシンキング入門

思考の癖を突破する3つの視点活用法

思考の癖はどうして? 人には思考の癖があり、考えやすいことや考えたいことを自然と考えてしまいます。これらは無意識に行われ、自分自身で制約を設けていることに気付かないことが多いです。しかし、「視点、視座、視野」の3つの視を意識することで、より広い思考を得ることができます。また、思考の偏りを防ぐために、問題を分解して考えるという手法も効果的です。 学びの活かし方は? この学びは、いくつかの場面で活用できると感じています。たとえば、進行中のプロジェクトでのアイデア出しや、会議用のプレゼン資料を作成する際に役立ちます。また、部下からの提案を一緒に確認したり、データ分析を行う際には、何を知るための分析なのかを意識することで、全てのデータを解析しようという不必要な負担を避けることができます。 会議の進め方は? さらに、自分が開催する打合せでは、冒頭で会議の目的を明確に伝え、出席者の共通認識を一致させた上で会議を開始することが重要です。会議のプレゼン資料を作成する際には、その資料が目的に合致しているか、議論すべき点に見落としがないかを客観的に確認します。そして、議論の場では「本当に?」「なぜ?」という視点を持ち込むことで、議論が一段と深まるようにリードします。

データ・アナリティクス入門

内省の力が未来を創る

内省はどう進める? 内省的観察については、仮説検証型、行為一体型、外部フィードバック型の3つのアプローチがあることを学びました。実務では仮説検証型に偏りがちですが、変化の激しい現代においては、状況の変化をとらえながら行動と連動して内省を進める行為一体型が重要だと感じました。 学習動機をどう捉える? また、学習動機に関しては、ある理論モデルに沿って内発的な動機と外発的な動機を考えることの意義を学びました。具体的には、内側に起因する充実思考、訓練思考、実用思考と、外側に起因する関係思考、自尊思考、報酬思考という区分に基づいており、チームメンバーそれぞれの内発的動機づけをより一層支援する必要性を感じました。特に、評価目標に含まれていない業務に対しても、その必要性を相手の立場に立って理解してもらえるよう説明することが大切だと思います。 外発動機の見える化は? さらに、外発的動機については、データ分析の結果などを可視化した資料をより多く共有することで、目的に即した行動や目標の具体的なブレイクダウンを個々にサポートする重要性を実感しました。新しい指標を取り入れるなど、自身の行動変容やマインドセットの転換にも積極的に取り組んでいく必要があると感じました。

データ・アナリティクス入門

データで見える未来の仕事術

平均値を使う意味は? 平均値を中心に使っていたものの、実はその名称や意味を十分に理解できていなかったことに気付きました。加重平均や幾何平均も実は使ってはいたのですが、今回の学びで、自分の仕事の中で具体的にどう応用できるかをイメージすることができました。 散らばりはどう捉える? また、散らばりや標準偏差といった指標を通じて、データ比較のためにさまざまな基準があることが理解でき、非常に興味深かったです。普段はあまり使っていなかったヒストグラムも、実際に活用することで、案件のサイズがどこに集中しているかが一目で分かり、次の一手を考えるためのヒントになりそうです。 どの平均を選ぶ? さらに、加重平均は現状のデータ分析に役立ち、幾何平均は来年度の数字を検討する際に採用できそうだと感じています。標準偏差の活用法については、これから意識しながら幅広い視点で考えていく予定です。 実践で数字はどう変わる? 明日には、過去のデータをもとに加重平均、ヒストグラム、幾何平均の活用を実践し、特に幾何平均については過去数年分のデータを基に来年度の数字の妥当性を検証してみたいと思います。これまで漠然と感覚で判断していた数字が、しっかりとした目安となると確信しています。

クリティカルシンキング入門

データの本質を引き出す視点の磨き方

データの解像度を上げるには? 目の前にあるデータを単に見るだけでなく、それを加工し、グラフなどで視覚化し、さまざまな切り口で分解することで、データの本質的な意味を理解することができると感じました。このように解像度を上げることで、データが持つ真の価値を引き出すことができます。ただし、自分にとって都合のいい結論に導くためだけに分解して終わらせず、他の切り口がないか、結果に漏れや重複がないかを常に疑う姿勢を持つことが重要です。 事業計画に活かすデータ分析 こうしたアプローチは、事業計画や月次報告などで数字を扱う際に特に効果的だと考えます。数字をただそのまま見るのではなく、複数の視点で分解することによってデータを正確に捉えることができ、その結果、本当の問題やボトルネックが浮き彫りになり、効果的な対策を講じることが可能になるでしょう。 新たな分析視点をどう加える? 事業計画の策定や月次報告の際には、以下の点を意識して取り組みたいと考えています。まず、数字を羅列するのではなく、視覚化して表現することで新たな気づきを得る。そして、これまでに使ったことのない新たな切り口を加えることにより、テンプレートにはない分析を行い、さらなる洞察を得ることを目指します。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

データ・アナリティクス入門

問題解決力を磨くための新たな視点

問題解決で大切な視点は? 問題解決のプロセスにおいて、重要なのは「あるべき姿」と「現状」のギャップを意識し、その上で優先度や重要度に基づいて取り組むか否かを選択することです。このステップは一方通行ではなく、行き来することもあります。定量的な評価を行う際は、単に数値の変化に注目するだけでなく、現場で何が実際に起きているのかを確認することも大切です。また、人に説明する際にはビジュアル化が有用です。 課題設定でのポイントは? 問題解決の際には、課題の設定で「あるべき姿」が明確にされているかを確認します。実務に取り組みながら、今行っている作業が問題解決のどのステップに当たるのかを常に意識することが求められます。定量情報に偏ることなく、現場の状況や定性情報も取り入れ、適切な切り口や仮説を設定します。 分析計画で留意すべきは? 分析に先立って行う分析計画表には、「あるべき姿」とそのギャップ、各問題解決ステップにおける具体的な作業を記載します。多面的なデータ分析を行い、状況に応じて計画の修正を柔軟に行うことが求められます。また、MECE(漏れなく重複なく)にあまりにもこだわるよりは、意味のある切り口や仮説を意識しながらデータに向き合うことが重要です。

クリティカルシンキング入門

データ分析の新しい視点発見!

データ分析で新発見を得るには? データを分析する際には、さまざまな切り口から考え、実際に手を動かしてデータを加工することで、新たな発見が多くある。分解の粒度が大きい状態で導き出した結果を安易に結論としてしまうと、誤った判断を下す可能性がある。そのため、分解を行う前に全体を把握し、定義することが重要だ。 仮説をどう裏付ける? これまでデータを分解して分析することは多々あったが、全体を把握し、定義したうえでMECE(Mutually Exclusive, Collectively Exhaustive)な切り口で分解できていたかというと、必ずしもそうではなかった。また、自分が立てた仮説を裏付けることを目的として、恣意的に切り口を設定していたこともあった。まずは、オフィス内のスタッフごとの工数負担について、全体を把握したうえで分析したいと思う。 先入観を排除する方法は? 普段、自分が抱いているイメージという先入観をまず取り除き、工数実績などの数値から導かれた結果にフォーカスする。そのうえで、全体像を把握し、MECEを意識して切り口を決定する。具体的には、全員の残業時間も含めた総労働時間をもとに、業務ごとの工数を比率として算出してみたい。

マーケティング入門

ターゲティングで売上アップの秘訣を学ぶ

商品に対する受け入れ先をどう定義する? どんなに優れた技術を持っていても、その商品の受け入れ先が定義されていなければ、それは「絵に描いた餅」に過ぎません。「誰に売るか」を明確にするためには、顧客を多様な視点でセグメンテーションし、ターゲティングを行うことで差別化したポジションを確立することが重要です。これにより、売上の最大化につながることがよく理解できました。 ターゲット層をどう絞るべきか? 私たちの自社商品はヘルスケア関連であるため、健康に関心が高い一定の年齢層をセグメント化することが求められます。そのターゲティングを行うには、さらなる切り口が必要です。たとえば、健康に興味を持ち、お金を投じる傾向のある高所得層や、特定のライフスタイルを持つ層に焦点を当てるという仮説が考えられます。 データ分析で見えるギャップは? 過去の自社ソリューションの購買データを分析し、イメージしたターゲットとのずれがないかを確認します。もし乖離が見られる場合、その原因を追求しなければなりません。また、「健康への関心✖️高所得」以外の新たな訴求ポイントを会議で洗い出し、自社のポジショニングマップを作成します。これをもとに、来年度の営業戦略の立案に活用します。

クリティカルシンキング入門

データ分析で学ぶ!実践で磨く思考力

結論は本当に正しい? データを扱う際には、まず計算して情報を加工し、複数の視点から分解し、得られた結論が本当に正しいかどうかを疑うことが重要だと学びました。表や数字を眺めて悩むよりも、実際に手を動かして考える方が効果的であると感じています。 調査結果をどう見る? これからは、マーケティング調査の結果を見て、どのようなニーズが存在するのかを理解するために使おうと思っています。これまでは、マーケティング部から提供された考察を読み、データに違和感がなければ納得していました。しかし、今後は得られたデータを自分で加工および分解し、その上で考察してみようと思います。そして、共有された考察が本当に正しいのかについても疑いの目を持つことを心がけたいと思っています。 自分で検証してみる? 今後、調査結果が共有された際には、自分でもデータを一度加工・分解してみるようにします。MECE(Mutually Exclusive, Collectively Exhaustive)を意識しつつ、まずは手を動かして、加工や分解に慣れることを目標とします。そして、得られた考察には常に疑問を持ち、自分の意見を形成したら、他の人にもそれを共有するように心がけます。

「データ分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right