データ・アナリティクス入門

「成功と失敗の両面から学ぶ分析術」

分析の本質とは? 分析の本質は比較であるということを学びました。適切な比較対象を選ぶことが重要で、同じ基準で比較することが求められます。分析の目的を明確にし、何を明らかにしたいのかを考えた上で、それと比較するものを決めるようにしています。 生存者バイアスとは? また、生存者バイアスに引っ張られないように注意し、成功談だけでなく失敗談や隠れた事実にも目を向けるように努めています。新規プロジェクトやビジネスの検討の際には、比較対象を利用した分析を重視して提出しています。 口頭説明からの変化は? これまでは上司や他部門に説明する際に、数字や分析を用いずに口頭で説明することが多かったのですが、今後は分析結果をもとに対峙するように心がけます。休み明けに提出する会議資料や、副社長とのミーティング用資料でも早速この方針を実践するつもりです。 比較対象の導入はどうする? 事実の数字を列挙するだけでなく、その数字を示す必要がある理由や目的をまず考え、適切な比較対象を導入して分析し、説明できるよう取り組んでいきます。

データ・アナリティクス入門

仮説×分析で広がる学び

最初の目的は何? 分析に対して明確な目的意識を持ち、初めから仮説を立てるというプロセスは非常に実践的で役立ちました。最初に結論の方針を定め、その上でデータ収集を進める手法は、後の分析をスムーズに導いてくれると実感しています。 データ分解の意味は? また、データを分解し、得られた情報をさらに細かく吟味してストーリー性を持たせる工夫も印象的です。仮説の過程や構成要素を記録しておくことで、最終的な結論と照らし合わせながら再確認するプロセスも納得できるものがありました。 なぜ比較が必要? 加えて、複数の対象者から得られる情報において数を揃えて比較をするという点は、分析結果を信頼性の高いものにするための大切なポイントだと感じました。これにより、結論を支える根拠が一層明確になり、聞き手が納得しやすい資料作りが可能になっています。 学びの意義は何? 全体として、仮説に基づいたデータ収集と詳細な検証、そして論理的なストーリーの構成という一連の手法は、現実の業務においても非常に活用できる貴重な学びとなりました。

データ・アナリティクス入門

目的明確で築く確かな結論

分析目的は何? 分析の目的を明確にすることは非常に大切です。何のために分析するのか、その目的をはっきりさせた上で、比較対象を可能な限り条件を揃えて行うことで、有益な分析結果が得られます。結果として、比較のためのデータ収集が重要なプロセスとなり、その積み重ねが有意義な結論に結びつきます。 品質管理はどうする? また、品質管理の業務においては、障害の原因分析や発生した障害に対する対策の有効性を検証する際にも、この手法が有効です。分析の目的が既に明確であれば、次に課題となるのは、比較対象となるデータの選定と収集です。その際、これまでの経験を踏まえ、しっかりと仮説を立てながら進めることが、正確で有意義な結論を導くポイントとなります。 仮説作成はどう進む? さらに、仮説を立てる場合は、個人の経験や知識だけに頼るのではなく、周囲の知恵や知識を共有して取り入れることが重要です。関係者との情報のやり取りが、より有効なデータの選定と収集につながり、最終的には信頼性の高い結論を導き出すための大きな助けとなると考えます。

データ・アナリティクス入門

問題特定力で決算分析を革新する

問題解決の重要性を再認識 問題解決において、「WHAT / WHERE / WHY / HOW」を考慮する重要性について改めて認識しました。特に、問題が何であるかを特定しない限り、分析は始まりません。問題特定の際には、目標と現実、予想と実績などとのギャップに注目することが重要です。 決算分析をどう活用する? 私は、月次および年次決算の分析において、予想や通常の実力値に対する決算実績の原因を分析し、その結果を本社に報告しています。この分析結果を基に、決算短期予想の作成、目標の設定、予算の策定、新商品の販促・マーケティングにも活用したいと考えています。 月次決算分析のステップは? 特に月次決算分析では、問題解決のステップを意識して分析・報告を行っています。昨年平均、昨年同月、前月などと比較し、特殊要因や問題を特定します。決算書は既にある程度ロジックツリーが出来上がっているため、項目同士の比較を通じてギャップを発見し、原因を追究します。そして、必要に応じてツリーをより深く分解していくことが求められます。

データ・アナリティクス入門

仮説実験で見える成果への道

ABテストの教訓は何? ABテストで学んだことは、仮説を検証する際に検証対象以外の要素はできるだけ固定することの重要性です。過去には、時期的な要素を十分に考慮せずに振り返りを行った結果、どの部分が効果につながったのかが不明確になった経験があり、今後はこの点に注意していきたいと考えています。 クリエイティブはどう検証? また、クリエイティブの検証においては、検証項目以外の要素が多いため、何を検証するのか、どの要素を変更するのかを明確にする必要性を実感しました。これにより、取り組む際の焦点が定まり、より効果的な結果が得られると考えています。 実施方法はどう評価? 具体的には、広告動画の検証でストーリーの流れはほぼ同じに保ちつつ、一部の要素だけを変更する手法を採用しました。さらに、同じ期間で配信を行い、得られた結果を比較検証することで、効果が認められたものを今後の施策に活かす予定です。 新たな仮説は何から? 今後は、別の項目についても新たな仮説を立て、同様のテストフローを構築していく計画です。

データ・アナリティクス入門

振り返りが照らす学びの道

目的と手段の違いは? 分析に取り組む際、まず「要素の分類化」や「比較」という視点を確認しました。分析はあくまで手段であり、目的ではないという点が印象に残ります。これにより、仮説を元に進める中で、途中から「差分探し」が目的化してしまわないよう注意する必要性を感じました。 レポート設定の意義は? また、定期的な分析レポートを実施する際には、改めてその目的を明確に設定することが大切だと再認識しました。業務の中で、分析自体が目的とならず、真に必要な意味を見出すために、常に差分に敏感になり、その差分がどのような意味を持つのかを意識する習慣を身につけることが求められます。 PDCAはどう実践する? さらに、すべての分析には仮説を立て、得られた結果に基づいて施策のPDCAサイクルを実行することが基本です。報告時には、ただ結果を示すだけでなく、分析の目的や背景を相手に伝える工夫が必要です。分析を終えた後は、やりっぱなしにせず、必ず振り返りの時間を設け、次のアクションにつなげることが今後の改善に寄与するでしょう。

クリティカルシンキング入門

切り口から紐解く数字の魅力

数字の解析はどうする? 今週は、数字を分解する方法について学びました。数字はそのまま扱うのではなく、グラフや比率などに加工することで、より分かりやすくなるという点に気づきました。また、データを仕分ける際は、さまざまな切り口を考えて書き出すことが重要であると学びました。得られた数字の解釈に思い込みすぎず、結果が出なくても構わないという柔軟な姿勢が大切であり、迷った際には別の切り口からアプローチすることが有効だと理解しました。さらに、実践に際しては、属性、変数、プロセスという3つの切り口からMECEの概念を活かして分解する方法も学びました。 売上分析はどう進む? この学びを活かして、月次の売上報告書の分析に取り組んでみたいと考えています。まず、売上を顧客数×単価の視点から自社の過去の傾向を整理し、課題を特定します。次に、その原因を明らかにするため、顧客をいくつかの切り口に分け、それぞれの単価傾向を比較してみます。最後に、分析結果から導かれた解釈が適切かどうか、会議で意見を聞くことで確認していく予定です。

データ・アナリティクス入門

エビデンスが示す戦略の新境地

A/Bテストとは? A/Bテストは、データ分析における「比較」の重要性を実感させる手法です。ランダムにサンプルを抽出することで、一定数の調査データから精度の高い結果が得られる点や、どの工程でボトルネックが発生しているか割合を算出できる点に実践的な可能性を感じました。 戦略の判断基準は? 勤務先のイメージ戦略について、2つの側面のうちどちらを強調すべきかは感覚的には把握しているものの、エビデンスが不足しているため不安な面もあります。A/Bテストを活用すれば、どちらがより効果的か明確に判断できるのではという期待から、早速ターゲティングサービスを提供する業者に同様のサービスがあるか確認する予定です。ただし、単純にAかBのどちらかだけではなく、両方を組み合わせた戦略が効果を高める可能性もあると考え、慎重な実施が必要だと感じています。そこでまずは広告代理店に相談し、業界の広報戦略が十分に実践されていない現状を踏まえた実証実験として、自社と共同で取り組める可能性を探るため、休み明けに連絡するつもりです。

データ・アナリティクス入門

数値分析の極意を学び事業改善へ

分析とは何を指すのか? 目的を明確にしないと、意味のないただの計算・数値になってしまいます。「分析」とは「比較」であり、比較の条件をそろえることが大事です。分析は考察までがセットです。この点を理解することで、意味のある数値やグラフの種類を適切に判断できるようになると思いました。 データをどう活用する? 例えば、WEBサイトやSNSの効果測定では、数値が自動的に出てきますが、それをどう考察するかが重要です。また、アンケート結果の分析では、目的を整理してから項目や回答のさせ方を決めないと、分析できないデータや目的に合わないデータになってしまいます。 明確化の重要性 分析の目的・ゴールを明確化することを最重要視することが肝心です。目の前の数字の増減だけにとらわれず、分析手法やその後の考察までを意識してアンケート設計を行う必要があります。 学んだことをどう実践する? 業務上、数値分析をする機会が度々あるので、今後は学んだことを意識しながら分析手法や報告内容を改善していきたいと思います。

データ・アナリティクス入門

データ分析の基本を押さえる重要性

データ分析の本質とは何か? データ分析は「比較すること」が本質であり、常に「Apple to Apple」と適切なもの同士を比べる重要性を学びました。これを達成するためには、実際の分析に移る前に、分析の目的を明確にし、仮説を立てることが大切であると感じました。 仮説の質をどう改善する? データ分析の前提整理や仮説を立てることには既に意識を持ちつつありますが、仮説の質にはまだ改善の余地があると考えています。データ分析を行った結果、自身の仮説が間違っていることに気づき、仮説を立て直すことが多々あります。経験を重ねることで一定の改善は見られるかもしれませんが、体系的に仮説を立てる方法を学びたいと思っています。 効果的な振り返り方法は? 振り返りをきちんと行い、適切な比較対象が選ばれていたのか、仮説がしっかり立てられていたのか、データ分析の目的が明確に言語化されていたのかを確認することが重要です。脳内でチェックリストを作り、それを基に実践し、反復練習を積むことが必要であると感じています。

データ・アナリティクス入門

データ活用力を劇的に向上させる方法

平均値の限界を知る データを分析する際、すぐに平均値を出してしまいがちですが、平均値には外れ値に弱いという特性があることを学びました。また、代表値には様々な種類があることも知り、今後データ分析を行う際には適切な手法を選ぶ必要があると感じました。 精緻な分析を行うには? 収支分析では、単純平均を使用する場合と加重平均を使用する場合を考えることで、より精緻な分析が可能になります。こうした分析により、問題点の把握が促進され、より適切な打ち手を考えやすくなると思います。さらに、効果的なグラフを用いることで、分析結果を周囲に分かりやすく説明できるようになるでしょう。 グラフで何を伝える? 分析を行う際には、常に顧客ごと、業種ごと、各部門や担当者ごとに適切な代表値を用いることを意識します。この結果、売上高や利益、経費、所属人数などが異なる場合でも、より合理的な比較が可能となります。また、分析結果を視覚的に分かりやすいグラフにすることで、事業部としての素早い意思決定にもつながると考えています。

アカウンティング入門

損益計算書が映す企業の健康診断

損益計算書の仕組みは? 損益計算書の読み方が明瞭になり、売上高、粗利益、営業利益、経常利益それぞれの意味や位置付けについて理解が深まりました。この知識により、各企業がどのような経営を行っているのかを、項目ごとの比較や昨年との比較を通じて論理的に分析することができるようになり、説明されている「成績表」や「健康診断結果」といった表現に納得しました。 学びをどう活かす? 今回学んだ知識を実際に活用するためには、さまざまな企業の損益計算書を見ながら「100本ノック」のような反復練習が必要だと理解しました。業務中に自然と今回の学習内容を応用できるよう、複数の決算書の背景も合わせて分析していくつもりです。また、最新の情報を取り入れるために、参考書を購入して読む予定です。 リスク管理とは? さらに、特別利益と特別損失、特に損失側の取扱いがどのように考えられるかに興味を持ちました。事故や天災など、どうしようもない事象に対して、事前にリスクを見積もり備えるという考え方が重要であると感じています。
AIコーチング導線バナー

「比較 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right