クリティカルシンキング入門

見える!MECEで課題解決のヒント

MECEとはどう考える? 今週の学びは、MECEの考え方と切り口の作り方についてでした。MECEとは、全体を定義し、もれなく重複なく切り分けることで、目的に沿った視点で事象を分解し、問題の所在を把握する手法です。 どんな切り口を使う? 具体的には、層別分解、変数分解、プロセス分解という3つの切り口が挙げられます。業務改善の課題分析に活用する際、これらの方法を組み合わせることで、従来のプロセス分解のみでは見落としがちなポイントを捉えることが可能になります。 問題解決の糸口は? 従来はプロセス分解で分析を行っていたため、問題点が多い場合にどこから手をつけるべきか迷うことがありました。しかし、まず解決すべき問いを明確にした上で、層別分解や変数分解を取り入れることで、目標に沿った形で課題を整理できると感じました。

クリティカルシンキング入門

視点を広げて苦情対応を改善する方法

MECEはどう捉える? MECEに分解することについては言葉で知っていたものの、実際に考えると難しい部分もあると理解しました。全体像を丁寧に把握することが重要であると学びました。様々な観点から数字を分析し、漏れや重複がないか確認しながら、日々の業務に活かしたいと思います。 苦情対応の現状は? 私は苦情対応を業務で行っており、年間で約50~60件ほどの苦情を受け取っています。これまで、年間傾向の分析が疎かになっていたため、この分析を生かして品質改善に努めたいと考えています。 改善の具体策は? まず、苦情を製品別、内容別、製造所別など、様々な観点で集計・分析します。そして、そこから改善点を見つけ出し、製品品質の向上につなげていきたいと思います。また、分析結果を基に改善計画を立て、具体的な行動に移していきます。

データ・アナリティクス入門

目的と課題を見極める!ビジネス成功の鍵

分析の目的を再確認するには? 分析は、目的があって初めて意味を持つことを再認識しました。ビジネスパーソンの価値は、会社の目的や日々の業務の課題を、いかに効率的かつ低コストで解決できるかにかかっていると考えます。 課題共有の方法は? まだ具体的な業務への分析の活用イメージはありませんが、まずは目的や課題をしっかりと定めることが重要です。特に、その課題が他者からの依頼である場合、最終的に得たいゴールを詳細に明確にし、目的や課題を共有するために議論を重ねることが必要です。 新規ビジネスの土台を整えるには? 新規ビジネスを検討する際には、まず会社や部署の目的やゴール、現時点での課題を正確に把握することを重視したいです。その土台が整った上で、各種フレームワークやツールを活用した分析に進むことができると考えています。

クリティカルシンキング入門

多角的視点で広がる学びの力

切り口の多様性は必要? 切り口が一つだけだと、偏った答えになる可能性があることがわかりました。しかし、複数の切り口を見つけるのは難しいとも感じました。自分が導きたい答えを得るために切り口を模索するという方法もあるのでは、と考えました。 実務での発見と応用 実務では、複数の業務を同時に行っているため、チームの弱点や強みを発見することに役立つと思います。今年の自分の目標の達成にも、多角的な視点での分析が重要だと考えています。 マインドの数値化は可能か? 昨年一年をかけて取り組んだプロジェクトでは、マインドを数値化するのは難しいと感じていました。しかし、異なる切り口を探して、数値化が可能でないか再考したいと思います。現在数値化されている部分についても、他の切り口がないか再検討し続けたいと考えています。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

クリティカルシンキング入門

伝わる!ピラミッドの極意

伝え方はどう変わる? ピラミッドストラクチャーの考え方を学び、何をどう伝えるべきか、メインメッセージとその理由、根拠を明確にする重要性を実感しました。自分の伝えたいことを一方的に表現するのではなく、相手にきちんと伝わる方法を心掛けることが大切だと感じています。 業務効率は向上? この考え方は、上司への提案や相談、部下への指示出しなど、日々の業務において活用できると思います。相手に求めることやその背景、理由を論理的に伝えることで、業務の効率化にもつながると考えています。 スキルは伸びる? 今後は、提案や指示を行う前にピラミッドストラクチャーの手法を活用し、伝えたい内容が明確かつ論理的に整理されているかどうかを意識していきたいです。そうすることで、伝え方と考え方のスキルの向上を目指していきます。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

データ・アナリティクス入門

ゼロから攻略!知識整理とデータの力

ゼロからどう始める? ケーススタディーに取り組む際、これまでのような指針がない状態でゼロから考えると、どこから手をつけたらよいのか迷ってしまうことが多いと感じました。そのため、どの状況でどの分析手法が有効なのかを再度整理し、自分の知識や経験を明確にしておくことで、このハードルを乗り越えられると考えています。 業務の効果をどう見る? また、日々の業務では求められるKPIの達成に向けたマネジメントが中心となりがちです。その中で、現在の活動が本当に目的に沿ったものであるか、またはより大きなインパクトを与える方法はないか、成功しているチームがどのような行動を取っているのかを考えるようになりました。そこで、データ分析を用いて客観的な視点からその効果を示すことで、より効果的な業務の進め方を模索していきたいと思います。

クリティカルシンキング入門

問いが導く未来への一歩

状況把握はできてる? 一般的に、良いとされる施策であっても、現在の状況を正確に把握しなければ、逆効果に陥る可能性があります。まずは自身が置かれた状況をしっかり理解し、その上で核心となる課題を明確に設定し、具体的に何をすべきかを考えることが大切です。 問い意識はしっかりある? また、ただ漠然と物事を始めるのではなく、「問いは何か」を常に意識し続けることが重要です。この姿勢が、より良い結果につながる基盤となると感じます。 新手法に挑戦する? 例年通りの方法に固執し、新しい手法に対するリスクや労力の増大を理由に前例に従うことが多いですが、これまで当たり前のように行ってきた方法に、まずは問いを持つという視点から見直しを加えることで、完成物の質が向上し、業務の効率化にもつながるのではないかと考えました。

クリティカルシンキング入門

読みたくなる!伝わるメッセージ術

伝わる文章の秘訣は? グラフやメール文章を作成する際、受け取り手にとって分かりやすい表現が重要であると改めて認識しました。ただし、いかに丁寧に作成しても、読まれなければ意味がなく、伝わらなければ業務の効率化にはつながらないと感じています。今後も、メッセージが正確に伝わる表示方法を常に意識していきたいと思います。 改善点をどう捉える? 仕事上、メールやスライド作成の機会が多いことから、今回の学びを活かして、受け手に注意や関心を持ってもらえるような工夫が必要です。まずは毎月配信するメールにおいて、タイトルや冒頭文の工夫、全体の構成や見やすさを意識しながら改善を図りたいと考えています。また、自分の作成したメールについて、変化や見やすさに関するフィードバックを受け、継続的にブラッシュアップしていく所存です。

データ・アナリティクス入門

仮説で切り拓く未来への一歩

仮説の検証方法は? 現状を十分に把握した上で、合理的な仮説の構築と、4Pなどのフレームワークを使って効率的に仮説を検証することの重要性を学びました。また、仮説思考の本質は、単なる対症療法ではなく、問題の根本原因を正確に特定する点にあるという理解に至りました。 環境理解と改善の極意は? さらに、環境理解と自身の役割把握を早期に行い、仮説検証で得た知見をもとに継続的な改善を重ねることが大切であると実感しました。周囲との連携を密にし、学び続ける姿勢が成果と成長を支える基盤となると感じています。 柔軟な変化への対応は? 加えて、変化に柔軟に対応しながら自律的に行動することの重要性を再認識しました。この学びを日々の業務に活かし、実戦で経験を積んでいくことで、より高い成果を目指していきたいと思います。

データ・アナリティクス入門

数値と成長が紡ぐ学びの物語

代表値の使い分けは? 今回は、実際に数字に集約して捉えるという観点から、代表値と標準偏差について学びました。代表値には、単純平均、加重平均、幾何平均、中央値が存在し、それぞれの違いを意識しながら適切に使用することの大切さを再確認できました。 数値の視覚化は? 業務上は、主に標準偏差をグラフ上で確認する形で活用しています。ただし、数値として厳密に扱っているわけではなく、視覚的なデータとして捉えています。また、幾何平均については、Excel関数を利用して計算することが多いです。 成長率評価はどう? 一方で、個人の成長率を評価する際に、回答年や回答抜け年、最初と最終の回答年がバラバラなため、アナログな方法で関数を適用している現状があります。より効果的な方法があれば、ぜひ知りたいと思っています。
AIコーチング導線バナー

「業務 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right