データ・アナリティクス入門

問題解明の鍵は日常にあり

現状と理想の差は? 問題を明確にするため、ロジックツリーの活用法を学びました。あるべき姿やありたい姿と現状とのギャップに着目し、そのギャップがなぜ生まれているのかを問うことで、原因の特定につなげられると感じました。原因分析の手段としてMICEを意識し、問題を分解する取り組みが、より具体的な問題の明確化につながると思います。 MICEの見方は? 一方、MICEの視点で考えることはすぐには難しいと感じたため、日頃からの訓練が重要だと再認識しました。例えば、夕飯のメニュー選びにおいて、中華、和食、洋食といった大分類の中で、麺類や主食といった細かなカテゴリーに分けて考えるといった方法を試してみようと思います。 予算獲得の鍵は? また、予算獲得に向けては、各業務におけるあるべき姿を明文化し、メンバーと共有することが不可欠です。現状とのギャップやその原因についてMICEを用いて検討することで、新たな発見や打ち手が見えてくると感じます。さらに、あるべき姿を明確にするために、会議を通して現状のユーザーの声や法的根拠を把握し、理想と現実の差をしっかりと捉えることで、あいまいな課題の解消につながり、全体のストレス軽減にも寄与すると思います。

クリティカルシンキング入門

デジタルツール活用で効率アップした話

オンライン学習のメリットは? 私はオンライン学習サービス「ナノ単科」を受講して、非常に有意義な時間を過ごすことができました。この講座では、最新のビジネス知識やスキルが学べるだけでなく、実際に業務に応用できる実践的な内容が豊富に含まれていました。具体的には、**デジタルツールの活用法**や**データ分析の基本原則**など、仕事に直結する知識が多く、業務効率の向上に役立っています。 ストレスフリーな学び方とは? 講義はオンライン形式なので、自分の都合に合わせて学習を進められる点が良かったです。また、テキストの内容がわかりやすく、動画講義も見やすい構成でストレスなく学べました。 業務への応用で得た成果は? さらに、ナノ単科を通じて得た知識を業務に活かすことで、自分自身のスキルアップを感じることができました。講義内容を実際の業務課題に応用する際の具体的なアプローチ方法も紹介されており、実務との結びつきが非常に強い点も評価できます。 このように、ナノ単科は自分のペースで学びながら、実務に直結するスキルを身につけられる優れたオンライン学習サービスだと思います。今後も継続的に利用して、さらなるスキルアップを目指したいと考えています。

データ・アナリティクス入門

フレームワークを使いこなしデータ分析力を高める方法

フレームワークの活用法をどう高める? コンサルティング業務全般で役立つ3Cや4Pのフレームワークは、日々の業務で活用しています。しかし、反論を排除するデータまで踏み込めていない場面があるのが現状です。現状の問題や課題を批判的に捉える視点を持ち続け、本質的な課題や仮説・回答を考え抜くことを諦めない姿勢が重要です。 データソリューションの資料作りにおけるポイントは? 現在作成中のデータソリューションサービスの営業資料には、データ分析の手法やその需要性を盛り込みます。フレームワークは組み合わせて使うことで本質に近づくことができるため、シャープな推論ができる頭の使い方が求められます。そのため、フレームワークを複数組み合わせて使う力を向上させることが重要です。 フレームワークの判断力をどう養う? 具体的には、以下を実行します。まずは分析でよく使うフレームワークを単体で使いこなせるようにします。その上で、単体で使いこなせるフレームワークの数を増やします。そして、組み合わせることによって効果を増幅させるパターンを覚えます。常にどのフレームワークを組み合わせるのが最適かを考え、最適なパターンを選べるよう、判断力を養っていきます。

戦略思考入門

差別化戦略で競争優位を築く方法

差別化の鍵は何? 3Cのフレームワークで学んだことを通じて、差別化戦略を考える際の重要なポイントとして、訴求するターゲット顧客の設定と顧客視点での競合の設定があることを理解しました。 自社をどう活かす? この考え方を基に、自社のリソースで何が可能であり、また中長期的な差別化がどのように実現できるかを検討する必要があります。競合に意識を向け過ぎると顧客への配慮が薄れるため、常に大局的に物事を見る習慣を身につけたいと考えています。 自部署の価値は? バックオフィス業務の集約化・効率化を図る自部署の業務形態を考えると、顧客は本社や店舗であると理解しています。この範囲内では直接的な競合は存在しないものの、将来的に業務の範囲を社外まで広げる際には競合との差別化が不可欠です。そのため、自部署が提供できる価値を改めて整理する必要があると感じました。 資源の整理は? 顧客や競合の設定に先立って、現状の情報整理が不十分であると感じています。そこで、今回のVRIO分析を参考にしながら、自部署が持っている価値、希少性、模倣困難性、そして組織としてどのような資源があるのかを整理することから始めたいと考えています。

リーダーシップ・キャリアビジョン入門

自分軸で切り拓く未来への一歩

キャリアの変化は? ナノ単科での学びを通して、キャリア形成は一度きりのものではなく、自己理解の深化と環境変化への適応を繰り返すプロセスであると実感しました。特に、キャリア・アンカーという視点から、自分が仕事において最も大切にしている価値観や動機を見つめ直す機会となりました。 現職での挑戦は? また、現職において、自分のキャリア・アンカーを保ちながら成長する方法を考える中で、戦略的なキャリア・サバイバルのアプローチが非常に参考になりました。今後の業務内容や変化する環境に対して、どのような能力や態度が必要かを具体的に整理し、将来計画につなげることの重要性を改めて感じました。 職務棚卸はどう? さらに、学んだ内容を活かして、職務や役割の棚卸を実施し、必要な能力開発プランを立てるプロセスがとても実践的でした。自己理解を深めると同時に、周囲との対話を通じて、自分自身のキャリア管理を積極的に進める意欲が湧きました。 学びの広がりは? 今回の学びは、個人の価値観を大切にしながら、組織全体としての成長にもつながることを実感させるものでした。これからは、得た知識を活かし、現場での実践をさらに推進していきたいと考えています。

リーダーシップ・キャリアビジョン入門

観察で磨く支援型リーダー術

リーダーシップはどう見極める? 企業変革の必要性と企業運営の複雑化が進む中で、マネージャーにはリーダーシップとマネジメントの両面での対応が求められています。リーダーシップのスタイルを見極める際、誤った認識をしてしまうケースがあると感じました。そのため、日常業務の中で業務の種類やメンバーの特性に合わせ、どのリーダーシップを発揮するべきかを意識的に考えていくことが重要だと実感しました。また、メンバー間にコンフリクトが存在するか否かが、対応方法を選ぶ決定的なポイントになるため、十分に注意する必要があります。 支援型リーダーシップはどう実践? 今年度から新たに移動してきたスタッフに対しては、支援型リーダーシップを実践するよう努めたいと考えています。まずは各メンバーの理解状況をしっかりと観察し、進捗を確認しながら、目標達成に向けたスケジュール管理を徹底します。その一環として、業務説明の時間を改めて設け、業務の目的や今年度目指すべき目標、年度内に実施するタスクとスケジュールを明確に伝えます。さらに、伝えた内容の理解度を確認した上でタスクに取り組む体制を整え、定期的に(月に一度)進捗の確認と振り返りの時間を設けるようにしていきます。

クリティカルシンキング入門

社員研修の見直しで業務効率アップへの道

イシュー設定の重要性を認識 イシューから考えることの重要性を認識しました。施策を考え始める前に、まずイシューを明確かつ具体的に立てることが大切です。これまでに学んだデータの分析・加工方法を活用し、様々な角度からイシューを検討して特定することが必要です。 なぜ研修が必要なのか? 現在の業務において、人事施策、例えば研修内容を検討する際、研修を実施することが目的となりがちでした(= 手段の目的化)。そうではなく、「なぜ研修が必要なのか」を考え、社内のイシューを様々な角度から抽出したうえで、その解決方法として研修が適切ならば研修を行うべきです。しかし、研修以外が適切と判断される場合は、研修を行わない選択も必要だと感じました。 社内イシューをどう特定するか? 社内・現場のイシューを的確に把握するために、従業員へのアンケートや管理職への個別ヒアリングを通じて、イシューの特定を丁寧に行っていきたいと考えています。イシューの特定には、その根拠を具体的かつ明確に説明し、そのうえで研修が適切な解決策なのかを検討します。研修またはその他施策により、特定したイシューの解決を行っていきます。まずは今週から取り組むこととしました。

クリティカルシンキング入門

学びを深めるための頭の使い方講座

クリティカルシンキングとは? クリティカルシンキングは、経営戦略に不可欠なスキルであり、特にマーケティング、アカウンティング、リーダーシップ、ファイナンスの基礎となっています。日常的に人は無意識に思考を制約し、つい考えやすいことや考えたいことに偏ってしまいます。そのため、思考の偏りを避け、自分の考えをチェックする「もう一人の自分」を育てることが重要です。 客観的に考える方法は? 物事を客観的に考えられるようになるためには、まず頭の使い方を理解し、次に他者とのディスカッションを行い、さらに反復トレーニングを続けることが大切です。新たな実験や試験計画を立てる際には、課題と目的を明確にし、しっかりと文章にすることが求められます。また、記載した内容をメタ認知し、考えに偏りがないかをチェックする習慣をつけることが重要です。 業務面談で注意すべきことは? 業務面談においては、相手にわかりやすい言葉で、具体的に伝えることを心がけるべきです。自分の計画する内容が主観的であったり偏りがあることを前提に、まずは考えを俯瞰する習慣を身につけたいと思います。付箋やメモを活用してできるだけ文字に残し、それを基に繰り返し練習していきます。

データ・アナリティクス入門

論理とフレームワークで拓く未来

フレームワーク活用は? 課題に対して仮説を立てる際、4Pや3Cなどのフレームワークを活用することで、これまでの漠然としたアプローチから、より効率的かつ効果的な方法へと進化できることを実感しました。従来の方法と比べ、論理的に整理された仮説構築が可能になり、今後の取り組みに大きな期待を持っています。 客観データで見直す? また、仮説思考においては、反論を排除せずに客観的なデータ収集を行い、都合の良い解釈にとらわれないことが重要だと学びました。仮説が間違っている可能性を認め、検証に基づいた見直しを行う姿勢が、正確な結論に繋がると感じています。 問題解決の切り口は? 今後は、問題解決に向けて複数の仮説を立てる際、フレームワークを活用しながら様々な切り口で検討していきたいと思います。これまで何となく仮説を立てていた点を改め、より具体的かつ体系的なアプローチを心掛けるつもりです。 進行中の分析は? 現在進行中のデータ分析に関しても、今回の学びを活かし、もう一度仮説を立て直して検証を行います。日々の業務において常に仮説と検証のプロセスを意識し、フレームワークの活用に習熟することで、より確かな成果を目指していきます。

リーダーシップ・キャリアビジョン入門

承認が紡ぐ未来への一歩

伝え方はどう工夫する? ライブ授業内のロープレで部下役を演じた経験から、ただ目標達成を評価するだけではなく、貢献や努力に対する承認、労い、感謝の意を伝えることの大切さを実感しました。実際のフィードバックの場面では、自分が上手く伝えられるか不安が残るものの、しっかりと準備して臨めば、効果的かつ未来志向の振り返りが実現できると感じています。 目標はどう定める? また、現時点で今期の目標設定が不明確なメンバーもいるため、早急に目標を定める必要があります。しかし、急がば回れという考えのもと、自分自身やチームの業務と会社全体の目標をしっかりと結びつけ、適度な成長機会を提供できるよう努めたいと考えています。そのためには、具体的な活動計画の策定と定期的な進捗確認が欠かせません。 1on1で支援はどう? 今後は、1on1ミーティングを活用して各メンバーのモチベーションを理解し、業務の進捗を確認しながら、必要な支援を提供していきます。問いかけの方法にも工夫を凝らし、メンバー自身に考え、言語化してもらえるよう促すことを意識します。そして、各自が環境や仕事の状況を的確に把握できるよう、任せ方の変化にも取り組んでいきたいと思います。

データ・アナリティクス入門

予測に挑む!データの秘密

予測の意義は何か? グラフを見る前に予測を立てる大切さが非常に印象に残りました。自分の予測と実際のデータとの差異を意識すると、「なぜこんなギャップがあるのだろう」という疑問が自然に湧き、分析を深堀りするうえで効果的であると感じました。予測と実績を比較するアプローチは、次にどのデータを詳しく見るべきかという方向性を明確にする上でも有用です。 平均値の限界は? 従来、総量を人数で割って1人あたりの平均値を算出し、能率を評価していましたが、詳細に見るとその平均値だけではばらつきを十分に捉えられないことが分かりました。実際に細部まで分析すると、能率には大きな差異が存在していたため、平均値だけに頼るのは疑問が残ります。そこで、中央値を算出することで、平均値では見逃しがちな偏りを補完する方法を試してみようと思います。 中央値の有効性は? また、標準偏差を用いて平均値からのばらつきを把握する手法もありますが、場合によっては中央値と比較するだけで十分な情報が得られる可能性もあります。今後は、業務の能率評価において、平均値のみならず中央値の使用意義を周知し、従来の考え方から新たな視点に変えていくことが重要だと感じています。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

「業務 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right