クリティカルシンキング入門

クリティカルシンキングで仕事を変える

クリティカルシンキングって? クリティカルシンキングの必要性とその基本姿勢について改めて確認しました。業務においては、新しいアイデアの着想に加え、コミュニケーションの円滑化に寄与する効果があることを理解しました。基本姿勢としては、常に目的を意識することが重要です。 説得と意思決定は? 特に、説得や意思決定の場面でこの効果をうまく発揮したいと考えています。説得においては、相手や状況、内容によって異なるため、理屈だけでは通じないこともありますが、理屈を成り立たせることは重要です。意思決定では特に理屈が重視されるため、業務において活用していきたいと思います。 目的意識はどうする? 常に目的を意識し、なぜそのような結果になるのかを問い続けます。結果を得た際には、短期的な視点と長期的な視点を持ち、観点を変えても結論が変わらないかを確認します。このような方法で、論理の破綻や欠陥がないかを確認しながら意思決定を行いたいと考えています。

データ・アナリティクス入門

実践で磨く!データ活用のヒント

学びはどんな感じ? これまでの学習を通じて、データ分析の基礎から実践的な活用方法まで、一連の流れを体系的に学ぶことができました。単なるデータ処理にとどまらず、どのように課題を設定し、仮説を立て、検証するかという思考プロセスの重要性を改めて実感しました。 重要な点は何? 学習内容を振り返る中で、自分にとって重要なポイントを再確認することができました。今後は、業務の提案文書作成時に、分析を活用して根拠を明確に示す取り組みを進めたいと考えています。また、日頃から目にするデータがどのように役立つかを意識する習慣を身に付けたいと思います。 次への一歩は? さらに、知識の定着を図るため、学習を終わらせずに統計検定の取得を目指すとともに、業務での分析においては各種フレームワークを適用し、実践で活かしていきます。具体的には、営業店の業務負荷の要因分析を実施し、仮説を立ててデータに基づく検証を行いたいと考えています。

データ・アナリティクス入門

幾何平均で見える新世界

なぜ異常値が出る? これまで、代表値や単純平均、加重平均は業務で使用してきましたが、幾何平均、中央値、標準偏差は財務業務では使う機会がほとんどありませんでした。特に、売上の成長率を計算する際に、幾何平均を用いなければ異常値が算出されてしまう点には驚きを覚えました。このことについて、なぜそのような結果になるのか、また今後どのように活用できるかを、再度整理する必要があると感じています。 今後の計算はどうする? また、これまで主に財務データを扱ってきたため、幾何平均や中央値、標準偏差の計算・分析を実施する経験がほとんどありませんでした。そこで、まずは顧客の年齢層データを対象に、中央値や標準偏差を計算し、その分析結果を社内で共有する予定です。今後は、財務業務に応用できるデータとして、幾何平均、中央値、標準偏差が有効に活用できる分野を探り、エクセル関数を用いた計算方法についても調査し、実際に計算していきたいと考えています。

データ・アナリティクス入門

ヒストグラムで読み解く営業戦略

平均の捉え方は? これまで、平均値については単に合計を個数で割るだけの計算に留め、データのばらつきにはあまり目を向けていませんでした。加重平均や標準偏差といった考え方は知っていたものの、実際の活用方法については具体的なイメージが薄かったため、今回の講義でその使い方を理解することができました。 顧客層の把握方法は? この学びを自分の業務に活かすため、地区全体の顧客売上データをヒストグラムで区分し、顧客層ごとの購買力を把握する手法に注目しました。顧客の売上ランクごとに適切な営業施策を検討し、個別にアプローチできる可能性を感じています。 実践で効果は? 具体的には、まず売上データを取得し、実際のヒストグラムを作成して区分を始めます。その上で、各区分ごとに合わせた営業施策の計画と実施を行い、売上数字の定点観測で変化を読み取ります。このプロセスにより、施策の効果を判断し、次の戦略検討に役立てる予定です。

データ・アナリティクス入門

平均の壁を越える、新指標の挑戦

課題はなぜ難しかった? 前週に比べ、今回の課題は難易度が上がっており、理解するまでにやや時間がかかりました。これまでは平均値を中心に分析していましたが、今回は単純平均、加重平均、幾何平均、中央値、標準偏差といった各指標を活用することで、より正確な分析に結びつけることができると感じました。 営業データの見直しはどうする? 業務では営業関連の数字を扱う機会が多いため、従来は一律の平均値を用いて前年度との比較を行っていました。しかし、さまざまな方法を試すことで、異なる角度からデータを分析できるのではないかという可能性を感じています。 新手法の試行錯誤は必要? これからは、どのデータにどの指標を適用するかを十分に検討した上で、目的に合わせたデータの取得と分析に取り組んでいきたいと思います。新しい手法に慣れるまで試行錯誤はあるかもしれませんが、自分にとっての最適な分析方法を見つけ出すことを目指します。

マーケティング入門

ライブ授業で発見!顧客視点の新常識

どうして顧客視点? 顧客視点の重要性について、改めて学ぶことができました。特にライブ授業内での「完全メシ」の話では、ターゲットとそのニーズを具体的に考える実践を通して、世の中の商品がいかに顧客視点を大切にして提供されているかを実感しました。 業務設計はどう? また、顧客視点に立った業務設計の必要性も強く感じました。現状、異なる視点を持つ顧客との関わりが多いため、「何が望まれているのか?」という視点を重視し、セリングではなくマーケティングのアプローチを取り入れることで、双方にとってWINとなる提供方法が実現できると考えています。 意見整理はなぜ? さらに、自身の考えを文字に起こすことの意義を再認識しました。提案やディスカッションの際、漠然と意見を述べると情報の整理が不十分になり、主観に偏る危険性があります。今後は、考えをしっかりと書き出して客観的に整理整頓することを意識していきたいと思います。

クリティカルシンキング入門

視点を拡げる!クリティカルシンキング活用法

視点を広げる理由は? 人は思考に癖があり、そのため視点を拡げることの重要性を学びました。思考の癖があると、考えるべき論点や視点が抜け落ちてしまうことが大きなデメリットとなります。そこで、フレームワークや視点を拡げる方法を活用して、過不足なく思考を進めることが大切です。 業務にどう活かす? 私はこの学びを自身の業務に活かせると考えています。特に、チームの現状把握や課題発見の際に役立てたいと思いました。現状を整理する際には、何をどこまで把握すべきかをクリティカルシンキングを用いて考えることで、思い込みや思考の癖を取り除き、正確に現状を把握できると考えます。 現状把握の方法は? 今月中にチームの現状をフレームワークを活用して把握する予定です。そのために、まずは必要な情報の枠組みを考えるところから始めます。論点をロジックツリーに分解し、過不足なく考えられるように心掛けたいと思います。

データ・アナリティクス入門

ABテストで磨く実践力

ABテストはなぜ重要? ABテストを正しく実施するためには、まず目的や仮説を明確に定め、比較対象となる条件をしっかり整えることが重要だと改めて学びました。 問題解決はどう進む? また、問題解決のプロセスを順序立てて取り組むことで、何が問題であるのか、どのような仮説が考えられるのか、そしてどのような解決方法を選ぶべきかを体系的に理解できました。マーケティングチームでの売上進捗に関する課題の特定や、適切な打ち手の選択、さらに広告の効果検証など、様々な場面でこのアプローチを活用できると感じています。 多角検討はどうする? さらに、複数の切り口で課題に接近し、必要なデータの洗い出しや抽出方法、そして解決策の多角的な検討を進める過程で、チームメンバーと協力しながら取り組む重要性を再認識しました。今後は、業務の中で意識的にアウトプットの機会を増やし、実践的な成果に結びつけていきたいと考えています。

データ・アナリティクス入門

仮説の種が戦略を育てる

仮説の捉え方はどう? 仮説を立てる際、時間軸と結論の視点で捉えるのか、あるいは問題解決のための手段として捉えるのか、細かく分解できることに気づきました。漠然としていた仮説も、目的と必要な手段を明確にすることで、より効果的かつ実践的なものに仕上げることができると学びました。 本当に必要な策は? 売上向上を目指す中で、「何が必要か?」という曖昧な問いだけでは、的確な戦略が立てられないという経験があります。そのため、問いを細分化し、一つ一つの要素に対して仮説を立て検証することが重要だと実感しています。 現状分析の手法は? 具体的には、まず自部署の業務範囲における現状の顧客アプローチ方法を洗い出し、効果があるものとそうでないものをデータに基づいて検証します。その上で、検証結果を踏まえて問題解決のための仮説を構築し、ボトルネックとなっている部分の改善策を検討していく手法を実践しています。

データ・アナリティクス入門

シンプルな挑戦、未来への一歩

A/Bテストの魅力は? A/Bテストが注目される理由は、そのシンプルさにあります。限られた要素を2つ以上のパターンで比較することで、運用や判断がしやすくなります。また、テスト用の画像やテキストを用意するだけで低コスト、少ない工数で実施できるため、実験のハードルが低いのも魅力です。さらに、いきなり新しい案を採用する場合と異なり、段階的な改善によりリスクを最小限に抑えながら効果を測定できる点も大きなメリットです。 業務問題の解決策は? 日々の業務において発生する問題に対しては、「What」(問題の明確化)、「Where」(問題箇所の特定)、「Why」(原因の分析)、「How」(解決策の検討)というステップを意識し、効率的に対処しています。特に、問題の本質を捉えるために業務プロセスを細かく分解するアプローチを採用しており、複数の解決策を洗い出し、その根拠を基に最適な方法を選択するよう努めています。

リーダーシップ・キャリアビジョン入門

共通ゴールで育む信頼のリーダーシップ

リーダーシップって何? リーダーシップは、単に役職や立場によって発揮されるものではなく、日々の行動で示し、信頼関係を築く中で生まれるものだと考えています。また、状況に応じた方法を選ぶ柔軟性も、効果的なリーダーシップには欠かせません。 ゴールはどう確認? まず最も重要なのは、共通のゴールを明確にすることです。各メンバーが担当する業務について、最初に目指すべき姿を互いに確認し合い、一致したイメージを持つことで、結果のブレを防ぐことができます。その上で、自主性を尊重しながら進捗や状況を共有し、必要に応じたフォローアップを行う体制が大切です。 疑問はすぐ解決? 次に、疑問があればすぐに確認すること、そしてそのタイミングで適切なサポートを提供することが求められます。誤った理解のままタスクを進めてしまうリスクを減らすために、常に相互確認とフォローを意識し、状況をしっかりと把握することが重要です。

データ・アナリティクス入門

データのバイアスに立ち向かう新視点

生存者バイアスのリスクとは? 「生存者バイアス」は、分析を主とする仕事に携わる人でも陥りやすい問題であると実感しました。データの扱い方だけでなく、分析対象の選び方についてもバイアスにとらわれず、ニュートラルに進めることが、自分の課題だと気付くことができました。 目的を明確にする重要性 BPOとして業務に携わっていると、データの使用目的が特に重要である場面が増えると感じています。以前の「マーケティング」という大義のもとでは、目的から外れることは少なかったのですが、目的を明確にすることが、業務全体でますます重要となりそうです。 データの純粋な観察方法 今回の講義を通して、データを純粋に観察する習慣を付け、仮説を立てることを重視し、比較対象が正しいかの確認を怠らないようにしたいと考えています。業務でバイアスの怖さを感じているため、事前の確認によって、バイアスの回避を心掛けたいと思います。

「業務 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right