アカウンティング入門

数字で読み解く経営のヒント

コスト削減の真意は? 単純にコストを削減すればよいというわけではなく、各社においてどの項目を増やすべきか、削減すべきかという違いがあることが分かります。 指標の意味はどう? 各種指標にはさまざまな観点があります。売上総利益については、単に売上高や原材料費が前年と比べて増減しているかに着目すればよいでしょう。一方、営業利益の場合は、販売費や一般管理費が売上総利益に対してどの程度の割合を占め、前年と比べて増加しているか減少しているかを確認する必要があります。さらに、経常利益の割合が高い会社は、本業での収益が薄い可能性があるという点も注目すべきです。 経営戦略はどう考える? また、自社の経営の方向性について常に自分なりに答えられるようになることが重要です。今後どの活動に資金を投入すべきかを具体的に示すことで、社内外に経営戦略を説明し、実行へと繋げることができます。さらに、昨年との違いを踏まえ、今後どこに注力すべきかを明確に説明できるようになること、そして自社および競合他社の財務諸表をじっくりと比較検討することが求められます。 費用配分はどう検討? 最後に、次のような疑問が浮かびます。研究開発費は一般管理費に含めるべきか、また、業種ごとに営業利益や経常利益の相場はどの程度異なるのか。当期純利益は株主にどの程度残るのが理想であり、その一部は従業員にどのように還元されるべきか。さらに、ROEやROIは損益計算書上のどの項目に対応するのか、といった点です。

戦略思考入門

新参者の視点で戦略を刷新する方法

慣例を捨てる視点とは? 戦略を考える際に重要なのは、昔からの慣例や惰性で行っていることを見直し、捨てる視点を持つことです。しかし、長く同じ部署や会社にいると気づかないことも多いので、新参者の目を活用するのが有効です。 判断基準をどう明確化する? 何を優先するかの判断基準を明確にすることで、捨てる判断を容易にし、関係者の納得感や後からの振り返りも可能になります。また、トレードオフでどちらかを選ぶだけでなく、両方の良いとこ取りをして効果を最大化することも考えられます。 自発的行動をどう引き出す? 変革の8ステップの5番目である「自発的な行動を生み出す」場合には、「次は何をする?」と問いかけることで、相手に考えさせ、指示して動かすことから脱却させます。 課題解決での優先順位は? 現在の業務である課題解決の方針検討では、いくつかの対策方向性を考えても完璧な案は存在せず、トレードオフが発生しています。そもそものイシューに立ち返り、物事の優先順位を考えた上で総合的に判断し、選択する必要があります。他者との合意形成では、この優先順位が一致するかどうかが重要です。 部下の成長をどう促進する? 次にどうすれば良いのか部下に聞かれた際には、逆に「どうする?」と問い返し、自発的な行動を促します。それにより、部下と上司の時間を節約し、業務のスピードも向上し、部下の成長を促進できます。ただし、間違った方向に進まないよう、これまで以上の頻度で状況確認が必要です。

マーケティング入門

お客さまの本音を引き出す力

顧客志向はなぜ大切? 顧客志向でプロセスを構築することの大切さを学びました。顧客自身が気づいていない欲求や、さらに求める+αの価値を引き出し、それを実現するための方法を検討し提案する必要があります。真のニーズを発見し、それを満たす際は自社の強みを活かすことで、他社との差別化が可能となる点が印象的でした。 ネーミングの魅力は? また、ネーミングの重要性にも触れられており、覚えやすくキャッチーな言葉であること、そして口にしたときに心地よさを感じられる点が理想とされます。実現手法としては、STPやAIDMAなどのフレームワークを用い、社内での合意形成にも十分に注意する必要があると学びました。何より最後に、常に顧客目線を持つことが重要であると再確認しました。 自動車業界で何を重視? 自動車業界での商品開発の現場においては、顧客がどこに強いペインポイントを感じているのかを深く検証することが求められます。現在検討している製品や機能が、顧客にとって実際に価値があるものかどうか、または他にもっと重要な課題がないかを見極めることが大切です。検証の手法や必要なデータについても改めて考える良い機会となりました。 異業種交流で何を掴む? さらに、異なる業種や業界のメンバーとのグループワークを通じ、自分の考え方や癖を再認識することができました。さまざまな価値観や考え方に触れることで、その背景にある理由や経験を深く掘り下げることができたのが非常に有意義でした。

データ・アナリティクス入門

数字が紡ぐリアル戦略ストーリー

数字の意味は何だろう? 分析のアプローチについては、ただ単に分析を進めるのではなく、数字に基づくストーリーを意識することの重要性を実感しました。統計データを見る際にも、平均値だけでなくばらつきを把握することで、より正確な判断ができると感じています。データ全体の傾向を理解した上で、平均、中央値、最頻値といった代表値から最も適切なものを選ぶことが大切です。 課題解決の鍵は? また、顧客の課題に対して解決策を提案する場合、やみくもな分析ではなく、具体的な数字に裏打ちされたストーリーによって、提案の確度を高め、顧客の納得感につなげることが求められると考えています。顧客自身が「これなら解決できる」と信じ、実行に移していただくためには、具体的で説得力のある根拠が不可欠です。 戦略の軸は何か? さらに、これからある不動産ブランドの戦略を分析する際には、まず「何を知りたいのか」という問題意識をはっきりさせ、最終的にどのような結論に導きたいのかを明確にすることから始めます。その上で、価格帯やエリア、スペックなど細かい情報に分解し、必要なデータが取得可能かどうか確認することが大切です。 仮説はどう練られる? 次に、取得したデータをもとに、なぜその戦略が採用されているのかという仮説を立て、検証の優先順位をつけながら実態を深く理解していく流れが有効だと感じました。こうした手法を通して、現実に即した分析が行え、説得力のある結論に結びつくと確信しています。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

データ・アナリティクス入門

データ可視化で見えてくる新たな発見

分析の視点を再確認する方法とは? 前回の学びから、分析における視点として5つの要素、すなわち「インパクト」、「ギャップ」、「トレンド」、「ばらつき」、「パターン」に分けて考えることが有用であると再確認しました。数字をただ眺めるだけでは気づきが得にくい場合でも、目的に応じた適切な可視化を行うことで数字の意味を見出すことが容易になります。特に、可視化は自分の理解を深めるだけでなく、説明相手の理解や認識の統一にも役立つと感じました。 平均の取り方をどう活用する? 普段の仕事でもデータを扱っており、どのような代表値を用いてその数字の塊を特徴づけて解釈するかを意識していましたが、この学びを通じてさらに細かな平均の取り方を再認識しました。特に幾何平均の活用については、施策立案や来期戦略、予算作成の際に大いに役立ちそうです。例えば、年間の応募推移を過去5年間にわたって見たときに、どのようにトレンドの推移を適切に抽出するかなどを具体的に考えることができました。 日々のKPI管理で使える可視化手法は? また、日々のKPI管理についても適切な可視化が求められます。現在は折れ線グラフで推移を見ていますが、前年比や積み上げグラフなども必要かもしれません。ユーザーの行動を分析する際には、ヒストグラムを活用して傾向を掴むことも考えています。具体的には、インストールからコンバージョンまでの期間別ユーザー数を把握することで、より詳細な分析が可能になると考えています。

データ・アナリティクス入門

未来の問題解決力を養うナノ単科の魅力

問題解決の4ステップとは? 問題解決の4ステップについて確認しました。これらのステップは、問題の明確化、問題箇所の特定、原因の分析、そして解決策の立案です。問題が発生した際には、このフレームワークに従って課題の本質と原因を十分に把握し、それを踏まえた解決策を検討することが重要です。ビジネスではスピード感が求められることが多いですが、原因分析を急いでしまうと誤った解決策に至る可能性があるため、注意が必要です。 仮説設定のポイントは? また、仮説を考える際のポイントには、複数の仮説を立てることや、仮説同士の網羅性を持たせることがあります。決めうちせずに、異なる切り口で仮説を立てることが大切です。仮説は他の可能性を排除した先にあるため、データによる裏付けも重要です。特に社会課題を扱う際には、原因の仮説が「分かりやすい」ものに走りがちですが、常に複数の可能性を視野に入れてデータを検討することが必要です。 フレームワークをどう活用するか? 提案やブレストの際には、今回のフレームワークを取り入れたいと考えています。また、チーム内で問題解決の4ステップを共有し、データの取得方法を数字だけでなく、アンケートや口頭での情報収集など選択肢を広げて検討することも重要です。 仮説設定が重要な理由は? 特にデータ分析では「仮説設定」が最も重要であり、クリエイティブが求められる分野だと感じています。今後、この点を重点的に取り組みたいと思います。

デザイン思考入門

共感で磨く顧客ヒアリング術

顧客課題整理は? 「顧客課題仮説」では、ユーザー、状況、課題、ソリューションをそれぞれ具体的に整理することで、単なるぼんやりした仮定ではなく、明確な言葉に落とし込むことができました。この手法により、経営者や従業員、支援者が共通のイメージを持ちやすくなったと感じます。 ヒアリングの進み具合は? 実際に経営者を対象に実践した際、項目ごとに整理されていることで、ヒアリングがスムーズに進み、受け入れやすい結果となりました。一方、ある飲食店の場合は、オーナーだけでなく、実情を把握している店長やホール担当へのヒアリングを次回実施することとなりました。もし項目化がなされていなかったなら、経営者の感覚だけでヒアリングが終わっていた可能性があります。 ユーザー深堀りは本当か? また、別の企業では、対象ユーザーが十分に深堀りされず、ニーズが曖昧な状況でしたが、今回の見直しを通じて、改めてユーザーの気持ちや共感を確認する機会となりました。順序は多少前後したものの、最終的にはユーザーの感情を基に課題を再検討することにしました。 共感が導く検討プロセスは? このプロセスでは、共感を出発点として課題を定義することが重視されました。基本的には決められた順序で進むのが望ましいものの、行きつ戻りつの中で課題を固めることも重要であり、仮に具体的なアクションに移していたとしても、ユーザーの共感が揺らいでいる場合は、再度立ち返って検討する必要があると感じました。

データ・アナリティクス入門

仮説で切り拓く学びの軌跡

仮説の基本的な意味は? 仮説とは、ある論点に対する一時的な答えを意味します。仮説を立てることで、説得力が向上したり、日々の課題に対する意識が高まったり、業務のスピードアップにもつながります。仮説には、結論に向けたものと、問題解決のための「どこで」「なぜ」「どうやって」といったステップに基づくものがあります。また、時間の経過により仮説の内容が変化することも考えられます。 仮説検証はどう進む? 仮説を構築する際には、まず複数の仮説を立て、各仮説が網羅的であるかを確認することが重要です。思いつきや直感、単一の数字だけで決めつけず、様々な切り口やフレームワーク(たとえば4Pなど)を用いて検証することが求められます。さらに、必要なデータが何か、どこにあるかを探りながら、証明可能なデータやアンケート、インタビューなどを通じて仮説を補強することも一つの手段です。 過去経験はどう活かす? これまでの経験や目の前の数値だけに頼る傾向がありましたが、初めに様々な可能性を洗い出しておくことで、全体のスピードアップや説得力が大幅に向上することを実感しました。また、3Cや4Pといったフレームワークは、実際の業務でどのような視点で分析を進めるべきかを検討する上で有効であると理解できました。調査依頼を受けた際には、目的に応じた適切な指標を考え、複数の仮説を立てることで、分析の軸を明確にし、必要なデータの所在を把握していくことが大切だと感じています。

クリティカルシンキング入門

一手間で魅せる伝える工夫

視覚化で何を伝える? 伝えたい内容を視覚化することの重要性を学びました。読み手に情報を探させず、分かりやすく伝えるためには、グラフのタイトルや数値の単位、文字のフォントや色の使い方など、細かい工夫が大切だと実感しています。一手間を惜しまない姿勢が、効果的な情報伝達につながると感じています。 資料作成はどう進む? また、様々な資料作成において、相手にとって魅力的で理解しやすい資料を作るため、以下の点を意識するようになりました。まず、「本当に伝えたいことは何か」を明確にし、情報が順序良く簡潔に表現されているかどうかを常に考えています。さらに、情報を盛り込みすぎず、伝えるポイントを視覚的に強調することで、読み手にとってわかりやすい資料が完成すると思っています。 資料品質はどう評価? 毎年テンプレートを用いて資料を作成していますが、資料の質を高めるために以下の観点でチェックと改善を重ねています。まず、文章面では主要なメッセージが心地よいフォントや色で表現され、必要に応じて表やグラフを用い視覚化を図るよう努めています。次に、グラフではタイトル、凡例、単位の表記が適切に設定されているか、また別のグラフ表現が可能かを検討しています。最後に、情報の整合性については、伝えたい内容が論理的かつ簡潔にまとめられているかどうかを確認しています。 このような取り組みを通じ、今後も相手に伝わる分かりやすい資料作成を心がけていきたいと考えています。

データ・アナリティクス入門

みんなで目指す納得評価術

評価基準はどう決める? 複数の案を選ぶ際、定量的な評価を行う方法はチーム内の納得感を高めるために有効です。ただし、評価の重みづけが主観的にならないよう注意したいと感じました。 テスト実施の秘訣は? A/Bテストでは、変更する部分を限定・絞ることが重要です。どの部分が効果的だったかを明確に判断できるよう、実施時期や対象ユーザのセグメントを統一し、他の要因が分析に影響しないようにする点にも気をつける必要があります。 現状把握はできてる? まずは現状をしっかりと確認し、当たり前の事実であっても言語化してチーム全体で共通認識を持つことが大切です。その上で、事象の原因を特定し、解決策の検討に移るステップが効果的だと感じます。 アンケート設計はどう? また、仮説をもとにユーザアンケートをデザインする際は、因数分解やクロス集計ができるよう意識することがポイントです。フレームワークを活用して実際に分析し、わかりやすく言語化していくプロセスも有益です。 レポート共有はどう? アンケートのデザインにおいては、考え方や方針をチーム全体で共有し、どのような分析が可能か、またはどの分析を行いたいかを仮のレポートとして作成してみると良いと感じました。 理想と現状の対比は? 最後に、あるべき姿と現状を整理し、適切なフレームワークを見つけて習得することで、資料として他者に教えやすい形にまとめられる点にも大きな意義を見出しました。

データ・アナリティクス入門

データ分析で競争力を引き出す方法

データ分析の本質とは? データ分析における本質は「比較」にあると言われています。この過程では、分析したい要素以外の条件を揃えることが重要です。適切な比較対象を選定し、分析の目的に沿った比較を行うことが求められます。 分析の目的設定はなぜ重要? まず、分析を始める際には、目的を明確にすることが必要です。そして、仮説を立て、それに基づいて優先順位を設定します。データの収集、加工、発見を経て、最終的には効果的な意思決定につなげていくのです。 成果を再現するには? 具体的な例としては、Aによる効果を分析する場面があります。この場合、Aが「ある場合」と「ない場合」を比較することが重要であり、分析はまさにこの比較によって成り立っています。特に営業職においては、成果が出ている活動の再現性を高めることが、組織の実績向上へとつながる可能性を秘めています。実績としては、販売実績やシェアが分かりやすいですが、行動としても活動日数や活動時間、活動製品内訳など、さまざまなデータが存在します。 比較を成功させるためには? 競合他社や都道府県別、営業社員別での比較を行う際には、まず分析の目的を明確にすることが肝要です。マネジメント業務では、売れる仕組みや自社製品の選定理由などを分析し、再現性の高いアクションプランの策定を推進しています。比較対象を選ぶ際には、目的に沿っているか、条件が均一かを確認し、分析を始める前によく見直すことが重要です。

「確認 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right