データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

クリティカルシンキング入門

思考を広げる!数字分解の新発見

数字をどう見捉える? 具体的なケーススタディを通じて、数字の分解やイシューの設定、メッセージの伝え方について学びました。数字を分解する際、特定の実例に引っ張られると、考えの幅が狭まることに気付きました。特に「観光」のイメージに縛られると、抽象度を上げる思考が難しくなりがちです。紙に書き出して共通点を探るなど、可視化する方法で考えるのが有効だと感じました。 見直しは本当に必要? また、イシューの設定では、他の数字を何度も確認しないと安心できない点が学びとして大きかったです。ひとつのイシューを見つけたとしても、「本当にそれで大丈夫か」「見落としていることはないか」を考え、数字の分解を見直すことを習慣にしたいと思いました。 チーム戦略はどうする? 現在リーダー役を務めているので、チームのメンバーや組織課題に向き合う際にこの知識を活用したいです。特に次年度のチーム戦略や目標を立てる際には、現状の組織課題をしっかりと把握し、イシューとして捉えた上で解決策を考えていくことが重要です。 抽象化の秘訣は? 抽象度を上げる思考は、身近な課題にも当てはまります。組織課題に取り組む際、他者から聞くチームのイメージや現在の業務に影響されて、思考の抽象度が上がりにくいことがあります。紙に書き出して抽象化する努力をしてみようと思います。また、イシュー設定に関しては、実務では分かりやすいイシューを見つけた時点で他の可能性を除外し、解決策を考えることが多いです。思考のプロセスを意識し、イシューを見つけた後にはそのイシューを再検討し、他の分解方法も試してみることを習慣化したいと考えています。

アカウンティング入門

数字で読み解くカフェ戦略

高単価モデルの特徴は? ミノルとアキコのケースを通じて、同じカフェ業界でもビジネスモデルが異なれば、売上高や粗利益、構成比といった財務指標が大きく変わることが理解できました。とくに、ミノルは高単価モデルであるため、項目ごとの金額や構成比からその特徴が一目瞭然です。また、高単価である分、販管費も高くなる傾向があると認識しました。 営業利益の秘密は? 両者の営業利益率は同じ3%にとどまっているものの、ミノルの絶対金額が大きく、客数は少なくても売上が多いという特徴が見受けられました。ミノルの場合、原価や販管費が高くても営業利益額が大きく出るため、ビジネスモデルとしては魅力的に感じました。一方で、費用負担を抑えるためにコスト削減を進めすぎると、品質低下や顧客満足度の低下、リピーターの減少など、悪循環に陥るリスクがあることも理解させられました。 低価格の難しさは? アキコのビジネスモデルは、参入障壁が低いという点では魅力がありますが、大手チェーンとの差別化が難しいという課題もあると感じました。特に、低価格路線の場合、人件費が大きな課題となることが予想され、事業規模が拡大するとさらに別の視点が必要になるのではないかと考えました。 PL確認の重要性は? また、自社のPLを確認することの重要性を再認識しました。自社のPLが思い描いたビジネスモデルに沿っているか、あるいは事業のコアバリューを反映した施策が講じられているかを、社内でしっかり議論する必要があると感じました。理想と現実のギャップを埋めるための具体的な施策を検討することが、持続可能な経営につながると考えています。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

アカウンティング入門

売上と付加価値の新発見!企業分析の視点

原価と売上の本質は? 売上総利益を付加価値と捉える視点は新鮮でした。今までは利益そのものが付加価値であると考えていましたが、実際には原価を抑えて高く売ることが価値なのだと理解しました。 利益の真意は何? 私たちはつい利益そのものに注目しがちですが、利益とは「原価、人件費、広告費などすべての費用を除いた残り」であることを認識しないと、儲けることがただ売上の成長に終始してしまう危険性があると感じました。そのため、事業計画を考える際には、収益構造をP/Lで簡単に捉え、売上と売上原価の関係や販管費と利益の割合を意識しながら効果的に検討していくことが重要です。 売上仕組みはどう見る? 売上の構造が付加価値が大きいのか小さいのかを客観的に見ることは、大変興味深いです。売上に対するコスト削減だけでも利益創出に貢献するので、資金を使う際には常に意識したいと思います。新規事業を検討する際には、どの部分に付加価値があり、どこで収益が見込まれるのかを具体的な金額と共に考える必要があります。 ブランドとP/Lの関係は? また、身近な企業のP/Lが自分の想像している企業ブランドイメージにどの程度一致しているのか確認してみたいと思いました。物価が上昇する昨今、各社がどのようにコスト削減に取り組んでいるのか、その削減がどの利益に影響を及ぼしているのかを確認することも興味深いです。さらに、新規事業において収益構造をある程度イメージできれば、夢物語にならずに実現可能性を説明できるようにしていきたいと考えています。逆に、そのイメージが描けない場合も、この視点が役立つでしょう。

戦略思考入門

学びの視点を広げる新しい戦略

学ぶ視点を広げるには? 勉強を続けるための考え方を改めて見直す必要があると感じました。特に、人を巻き込むことで他者の意見を聞き、広い視点で学ぶことができるため、思考の幅が広がり刺激を受けます。それにより、継続的に取り組んでいくことが可能になります。しかし、時間の使い方はまだ定着しておらず、課題に取り組む際には想定以上の時間がかかっているのが現状です。 理想像を描くプロセスとは? 自己の理想像を描くことの重要性を強く感じました。そのためには、現状を幅広い視点から把握する必要があります。これは、理想の姿やその道筋が時折変わるためです。 効果的な戦略策定のステップ ちょうど業務で戦略を考えるタイミングにあったため、以下の理解や取り組みがスムーズでした。まず、中長期(3年後)の目標、すなわちありたい姿を設定します。その目標を達成するための課題を明確化し、現状把握に基づいて課題を克服するための短期計画を立てました。 さらに、戦略策定ワークショップを実施し、様々な視点で物事を考える環境を整えました。また、関係者との情報共有を積極的に行い、助言を得ることで他者の意見を収集し、視点を広げました。 コミュニケーション戦略の分析方法は? サステナビリティ・コミュニケーション戦略を策定する際には、現状分析にも力を入れました。具体的には、自身が担当してきたコミュニケーション業務の結果や効果の確認、現状の各ステークホルダーとのコミュニケーションの洗い出し、結果と効果の確認、社外評価の分析などを行いました。これにより、戦略策定がより具体的で効果的なものになりました。

データ・アナリティクス入門

ロジックツリー活用でKPI改善を目指す!

ロジックツリーって何? ロジックツリーの使用方法について新しい発見がありました。ロジックツリーには、変数分解に加えて「層別分解」という使い方があるのです。層別分解は、全体を複数の部分に分けて同じ次元で揃える方法で、それぞれの階層の下には同じ要素が並ぶイメージです。一方で変数分解は、要素の掛け算を分解し、原因を特定するのに役立ちます。これらの手法を試行することにより、より包括的で明確な分析が可能になります。 営業支援機能はどう? R&D部門における営業支援機能のひとつとして、顧客向けPoCの作成や自社商材のクロスセル・アップセルの立案があります。しかし、これらの活動においてチームのKPI進捗率に大きな差が見られます。そこで、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することが重要です。一連の要素には、要素A→B→C→PoC作成→D→E→クロスセルなどがあります。 KPI設定は見直す? 目的は、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することです。このために、まず関係者とブレストを行い、現在の管理状況に関わらず関連しそうな要素のアイデア出しを行います。その後、出てきたアイデアを元に、現在のKPI設定が定量的かどうか、またMECE(Mutually Exclusive and Collectively Exhaustive)であるかを検討します。このプロセスの中でロジックツリーを使用し、特に不慣れな現在は層別分解と変数分解の両方を試し、それぞれの使用感をメモしておくことが有効です。

戦略思考入門

営業から学ぶ効果的な組織改革の道

売上での判断は正しい? 営業を担当していたときには、クライアントの優先順位を売上だけで判断していました。しかし、リソースの使用状況や応諾率の可能性、利益額といった観点を考慮していなかったことに気付きました。 リソースは足りるか? 現在、私はエデュケーションチームのリーダーとして活動していますが、組織には大きな課題が存在しています。この課題に対して適切な対応策を打つためには、今のリソースだけで足りるのか、何を捨ててでも取り組むべきなのかを議論する必要がありました。そこで、売上インパクト、応諾率、効果、リソースの使用、実行可能性、利益額といった観点でタスクの見直しが重要だと感じています. 育成課題はどこ? 現在のミッションは営業人材育成に特化していますが、より広い視野で階層別に考えを発展させるべきです。業績向上のために必要な人材像が現状どうなっているのかを分析し、育成の課題を知識、テクニカルスキル、ポータブルスキル、マインド、スタンスのどの部分にあるのかを特定することが求められます。そして、不要なタスクを捨て、優先すべき点を明確にすることで、限られたリソースの中で最大の効果を出す方法を模索したいです. 理想組織の実現は? 経営戦略の実現に必要な組織像を定量的および定性的に確認し、理想の組織における管理職やメンバーのあるべき人材像も同様に評価します。現状の組織と人材の状況を、業績などの定量軸とES調査などの定性軸で確認します。理想と現状のギャップを整理し、課題に対する改善策を考える際には、やめるべきタスクと併せて施策を立案することが必要です.

クリティカルシンキング入門

データ分析で見つける新たな可能性

情報はどう整理する? データを分析する際には、まず与えられた情報をそのまま受け取るのではなく、必要に応じて自分で欄を増やし、追加の情報を作成することが重要です。そして、その情報を視覚化し、絶対値だけでなく相対値も考慮しながらデータを評価することを心がけるべきです。 区切り方はどう決める? 次に、データを視覚化する際には、データの区切り方によって見える情報が異なることを認識し、自分の仮説が事実かどうかを確認するためにどの単位でデータを区切るかを慎重に考える必要があります。一番重要なのは、データをさまざまな切り口から分解し、単純に受け入れるのではなく、再度丁寧に考え直す姿勢です。 分解精度はどう向上? 業務においては、改善提案資料の根拠を示す際、日常的に発生する内容に対して、前回よりも今回、今回よりも次回と、分解の精度が向上していることを自分で確認しながら取り組むことが求められます。また、新しい運用の実施可否を判断してもらう際や、イベントのアンケート結果を分析する際、応対品質評価結果を分析する際にも、しっかりとしたデータの準備と分析が必要です。 事実確認は万全か? 確かな事実を分析するには、必要なデータが揃っているか、十分に分解されているかを事前に確認し、その上でデータ分析を開始するようにします。これにより、ただ手元にあるデータをそのまま見るのではなく、一時停止してデータを視覚化し、仮説が事実であるかを確認することを意識します。そして、MECEなどのフレームワークを活用し、抜け漏れがないかを確認した上で結論を導き出すことを心がけます。

データ・アナリティクス入門

データ分析で未来を切り拓く方法

分析の前提は合ってる? 「分析とは」「データについて」「ビジネスにおける分析」についての解説を通じて、日常の業務における暗黙の前提が見直される機会となりました。データ分析には、それぞれの経験により前提や基盤となる考え方にバラツキがあることが分かり、データを比較する目的を意識する大切さを学びました。ワーキンググループでは、積極的に意見交換を行い、メンバーからの多くの意見を参考にしつつ、自らの意見も発信できたことに感謝しています。 未来予測をどう図る? 普段の業務では、「分析とは」「データについて」「ビジネスにおける分析」についての振り返りを行い、業務の流れを見直すことができました。社内のKPI達成のために、次月に向けた改善計画を策定していますが、過去の実績結果をもとにした流れだけでは未来予測が考慮されていないことに気づきました。そのため、未来予測をデータとして仮想化し、改善計画に組み込むことで、より効果的なアクションを起こしていきたいと考えています。 改善策はどう統一? 現状では、分析後の改善アクションが各メンバーの個人裁量に委ねられていることに気づきました。この活動を通じて得たデータを元に、ベースラインを見つけることで、他の拠点や部署にも均質な業務品質を展開できる可能性があると感じています。 新たな発見はある? 一方、メタ思考的な視点から、社内に未分析の領域があることも考えられます。これらを確認し、分析する価値が見出された場合には、新たなデータ取得の検討や仮説構築を通じて、具体的な成果を導き出す道筋を考えたいと思います。

データ・アナリティクス入門

仮説で見える新たな可能性

仮説の意義って何? この教材では、仮説の基本的な意義とその分類について学びました。結論の仮説と、問題解決の仮説に分かれており、特に後者は「What?→Where?→Why?→How?」というプロセスで問題にアプローチする点が印象的でした。 検証マインドは必要? また、検証マインドの重要性や、説得力の向上、関心・問題意識の向上、スピードアップ、そして行動の精度向上といった効果も理解でき、実務における検証のプロセスがいかに大切かを再認識することができました。 SNSで成果は出る? 実際のSNSキャンペーンでの活用例として、たとえば「ソーシャルメディアAが最も広告費対効果に優れているのでは?」という仮説を立てる方法が紹介されていました。過去の広告データを徹底的に分析し、どのプラットフォームが最もコスト効率が良いかを比較。その後、小規模なA/Bテストを実施して実際のパフォーマンスを検証し、最も成果が出たプラットフォームに予算を集中させるという具体的な手順です。 フレームワークは有効? さらに、仮説のフレームワークを実業務に当てはめるための補助ツールとして、4P(Product, Price, Place, Promotion)や3C(Company, Customer, Competitor)、そして問題の本質に迫るための5Why(なぜ?を5回繰り返す)といった手法が紹介され、実践的な視点が取り入れられていました。これらのフレームワークは、課題の分析や市場での自社のポジションの確認、そして問題の根本原因の探求に大いに役立つと感じました。

デザイン思考入門

生成AIで顧客共感の新境地

どうしてペルソナが鍵? 生成AIのビジネス活用支援の立場から、生成AIの利用方法について考えました。自ら生成AIをどのように活用するかを検討し、実際の運用で示された課題を把握することは可能です。しかし、利用するお客様ごとに使用シーンや前提知識、目的が異なるため、彼らに共感し課題を正しく理解するには、ペルソナをしっかり定義し、その前提条件や目的、状況を想像して整理する必要があります。 顧客役割シミュレーションは? また、生成AIに顧客の役割を模倣してシミュレーションしてもらう手法も有効だと考えます。ペルソナで定義したユーザーとして課題を提示してもらうことで、要件定義のプロセスに新たな視点を加えることができるため、実践的な検討に大変役立ちました。 利用後の効果は何? 実際に利用してみると、生成AIからユーザー役として現実に即した質問が提起され、単なる想像にとどまらない網羅的な事前検討ができることが確認されました。従来、ユーザーを実際に巻き込む場合、コストがかかるという課題がありましたが、生成AIを用いることで低コストで実務に近いシミュレーションが可能となり、非常に参考になりました。 今後の展望はどう? 今後は、生成AIを活用してより具体的なユーザー視点からの課題提起やシミュレーションを実践し、顧客との共感を深める戦略に活かしていきたいと考えています。さらに、生成AIを使うことでペルソナの理解がどのように進むか、またそのシミュレーション結果をどのようにビジネス戦略に反映させるかについても、今後の課題として具体的に検討していく所存です。

「確認 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right