データ・アナリティクス入門

グラフ活用で成果を高める方法

グラフの読み方は? ■グラフの解釈と仮説の立て方 グラフを用いる際は、まず読み取りたい内容に合わせて最適な形式を選びましょう。グラフを観察する前に予測を立てることで、分析の方向性を明確にします。分析方法には、特徴的な部分を注目したり、複数のデータを比較して差異を見つけるなどのアプローチがあります。この過程で、解釈と仮説を同時に立てると効果的です。 R&Dチームの成果をビジュアル化する際には、チーム別に成果物の数をヒストグラムにし、偏りや詰まりを確認しましょう。この情報を基に各チームへのフィードバックを行い、改善につなげます。 データ表現の工夫は? ■ビジュアル化のヒント データビジュアル化では、代表値や散らばりに着目します。代表値の設定においては、データに応じて使い分けが重要です。 - 単純平均は、データ全体の総和をデータ数で割る方法で一般的に多く用いられます。 - 加重平均は、影響力の異なるデータに重み付けを行って平均を取る方法です。 - 幾何平均は、主に変化率や比率を扱う際に使用されます。 - 中央値は、外れ値に影響されにくいため、データの中心を把握する際に便利です。 さらに、散らばりを把握するためには標準偏差を用います。標準偏差はデータのばらつきを測る指標で、値が大きいほどばらつきも大きいことを示します。大きく逸脱したデータは重要なポイントかもしれないため、注意が必要です。 データが正規分布に近い場合、95%のデータが標準偏差の2倍以内に収まるとされています。この特性を活用して標準偏差を逆算する方法もあります。 最後に、プロジェクト参加者の満足度を測る際には、参加期間に応じた重みづけを行って加重平均を計算し、その結果を適切なグラフで示すことで満足度の傾向をわかりやすく伝えられます。 仮説検証の流れは? ■解釈と仮説の流れ まず、チームごとに成果物を数え、それを表にして視覚化します。次に、そのデータから予測を立て、詳細な解釈を行った上で仮説を形成します。この仮説をチームにフィードバックし、インタビューなどを通じて実態と照らし合わせることで、仮説を検証します。これにより、チームやプロジェクトのさらなる改善へと導くことができます。

データ・アナリティクス入門

問題解決を加速するストーリー設計

問題解決の本質は? ストーリー設計は、問題解決に向けた重要な要素です。分析に取り組む前に、解決したい問題を明確にし、結論のイメージを持つことが必要です。これにより、分析のプロセスが円滑に進められます。 仮説思考で何を見る? 分析のプロセスには、仮説思考のステップがあります。まず目的を設定し、仮説を立て(多少外れても問題ありません)、データを収集して検証します。また、5つの視点を持つことが重要です。インパクト(どれだけ影響を与えるか)、ギャップ(違いを見つける)、トレンド(時間の中での変化)、ばらつき(分布を見極める)、パターン(法則性の有無)を確認します。アプローチは、グラフや数値、数式を活用して進めます。 学びの次の一歩は? 今後の学習においては、考えを言葉にする「言語化」や本質を見抜く力、自分ごと化が重要です。また、「ありたい姿」に向けてのチェックポイントとして、具体性や意義、挑戦性、現実性を考慮し、モチベーションを維持する仕組みを構築する必要があります。 役割と判断の秘訣は? 私に求められている役割は、販売全体の動向を注視し、適切な配分調整で営業利益を達成することです。さらに、働きやすい環境作りや各自が能力を向上できる環境整備を推進します。そして、上司や部下、社外の方々と積極的にコミュニケーションを取り、一方的に考えを固執せず、全体最適な観点で判断を行います。大局的な会社の方針や戦略、動向を踏まえた部門運営を明確に提示し、決断します。 現状改善の策は? 会社のDX推進プログラムにエントリーし、具体的な課題解決に取り組んでいます。例えば、Web関連の各種KPIを全社の目標と関連づけ、可視化することが求められています。これは、WebのKPIが達成されても営業利益が未達成となる現状を改善するための施策です。また、プロモーションを投資対効果で判断する仕組みが必要とされています。さらに、データを活用できる人材の育成も重要課題です。専門的な分析を行う人材と、日々の判断を容易にするためにデータを活用する人材を育成する方針です。 今後の学びはどう? 以上の取り組みを通じて、今後も必要なスキルの向上や新しい学びを続けていきます。

データ・アナリティクス入門

Whereが導く新たな学び

解決のステップは? 問題解決の4つのステップを意識することで、課題解決に向けた取り組みがより効率的になると感じました。今後は、最も重要なポイントである「Where」を意識して分析に着手していきたいと思います。業務においては、あるべき姿と現状とのギャップを、定量的な指標で示すことが大変有効だと印象に残りました。 総評はどう考える? 総評として、問題解決のステップを意識し、効率的なアプローチを追求する姿勢は素晴らしいと感じます。また、定量的な分析の重要性を理解している点も非常に大切だと思います。今後は、具体例を交えた検証により、さらに深い理解が得られるでしょう。 手法とデータは? さらに思考を深めるための問いとして、以下の点を考えてみてください。 ・問題の「Where」を意識する際、具体的にはどのような手法を用いる予定ですか? ・業務での定量的分析を強化するために、どのようなデータが必要だと考えますか? 今回学んだポイントを、実務に具体的にどのように応用するかもじっくり考えてみてほしいと思います。頑張ってください。 理想と現実は? また、「あるべき姿」と「現状」のギャップについては、①正しい状態に戻すための問題解決と、②ありたい姿に到達するための問題解決があると認識しました。たとえば、以下のようなケースが想定されます. ・売上販売目標の場合  → 100%達成に届かない状況と、120%達成を目指す状況がある ・製品シェアの内訳の場合  → シェア80%を目指す場合と、シェア100%を目指す場合がある ・KPI Activityの場合  → 会社の指標を順守する場合と、それを大きく上回る目標を設定する場合がある 比較で見極める? さらに、分析にあたっては「分析とは比較なり」という考え方も大切です。具体的には、社内の数字の良い組織や競合他社と比較することで、現状とあるべき姿を明確にすることが重要です. また、あるべき姿と現状は、定性的な情報だけでなく、定量的な情報としても示すことが重要です。定性情報を定量化するために、数値によるスコア化(たとえば0、1、3など)を統一した条件で設定する手法も有効だと感じました。

クリティカルシンキング入門

イシュー特定力で課題解決を劇的に改善

イシューとは何? 課題解決において最も優先すべきことは、今回の主題である「イシュー」の特定です。イシューが何であるのかをはっきりさせないまま対策を講じると、解決する必要のない課題に労力と予算を無駄にしてしまうかもしれません。また、根本原因を解決できずに、対処療法に終わる可能性もあります。そのため、まずはイシューを特定することが重要です。 目的は何だろう? 現在直面している課題に対しては、以下の順序で考えることが推奨されます。まず、目的は何であり、最優先事項は何かを明確にします。その上で、その目的のためにその課題が解決すべきものであるか、またその優先度を評価します。もし解決するべきであれば、その課題の真因が何であるのかを考えます。 データで何が見える? 次に、真因を特定するためにデータを活用します。データをグラフで視覚化したり、その間隔を調整したりすることで、新たな視点が得られることがあります。そして、そこで見えてきたことに対して解決策を考えます。この解決策を考える際には、ピラミッドストラクチャーに整理することが重要です。これにより、どの課題に対して解決策を考えているのか、その解決策が本当に適切であるかを把握しやすくなります。 日常で何を学ぶ? 自分の会社でも、日々このような場面が数多くあり、逆に言うと日常会話の中でこの思考法を常にトレーニングする機会があります。「他の事業部がこれをやっていて、うちだけやっていない」と言われることがありますが、そういう場面をチャンスと捉え、思考をトレーニングしメンバーと共に取り組むことができます。来場者や聴講者の分析など、さまざまな場面でこの思考法を活用できるでしょう。 課題の真因は? セールスが伸び悩んでいる状況はよくありますが、イシュー特定のためのマップをピラミッドストラクチャーで作ってみると良いでしょう。例えば、セールスが伸び悩んでいる際にどこに課題があるかを掘り下げるハードルを下げたいものです。具体的には、アポ数か?リード数か?契約率か?契約単価か?というように、どの要素が真因かを特定したい時に、自然とイシューを検証する頭に切り替えるための土台があると便利です。

データ・アナリティクス入門

視点が変わるデータ再発見のヒント

代表値は何を示す? データ分析においては、代表値や標準偏差といった基本指標を正しく理解し活用することが大変重要です。代表値には単純平均、加重平均、幾何平均、中央値などがあり、分析の目的に合わせた使い分けによって、より正確に傾向を読み取ることが可能となります。なお、実際の業務では最頻値を確認する場面もあるため、必要に応じて取り入れることが望ましいです。 集約手法の選び方は? また、データの集約方法にはさまざまな手法が存在し、誤った方法を用いると解釈や意思決定にズレが生じる可能性があります。そのため、常に目的に合ったアプローチを意識し、適切な手法を選択することが重要です。さらに、データのビジュアル化では、表現方法を工夫することで数字だけでは気づきにくい傾向を視覚的に捉えることができるため、状況に応じた最適な手法の選択が求められます。 ダッシュボードはどう使う? 施策の効果検証や日々の数値を確認するためのダッシュボードの作成・管理は、私の業務において大変重要な役割を担っています。これまでも代表値の使い分けやデータのビジュアル化について意識してきましたが、今回の学習を通じて基礎部分を再確認することができ、より適切な方法を用いる必要性を実感しました。特に、ダッシュボードは自分だけでなくチームのメンバーも活用するため、見せ方や解釈しやすさに細心の注意を払っています。 新たな平均法は? これまであまり使用してこなかった加重平均や幾何平均についても、現在扱っているデータに適用できる場面を意識的に探していきたいと考えています。既存のデータを例に、新たな視点での分析に取り組むことで、今まで見逃していた傾向やパターンを見出せる可能性があるため、さまざまな集約方法を試し、状況に合わせた最適な手法を選択できるよう努力したいと思います。 グラフ表現の意味は? ビジュアル化に関しては、単にグラフを選ぶのではなく、なぜその形式が適切なのかという明確な意図を持って活用することが大切です。さらに、同じ種類のグラフであっても、表示する項目数や内容によって可読性や伝達力が大きく変化するため、見せ方の工夫や調整にも十分な注意を払っています。

データ・アナリティクス入門

仮説思考でビジネスを加速するテクニック

仮説の意義をどう捉える? ビジネスにおける仮説は、結論に対する仮の答えや具体的な問題解決のための仮説を含み、過去、現在、未来の視点から分析します。仮説の意義は、次のような点で明確です。まず、検証する姿勢が向上し、その結果として意思決定の精度や説得力が増します。また、関心や問題意識が高まるため、仮説形成には不可欠です。そのほか、スピードアップにつながり、行動の精度も上がります。 仮説の立て方はどう? 仮説を立てる際には、知識の幅を広げ、「耕す」アプローチが重要です。ここでは、なぜ5回も別の観点や時系列、将来予測、類似・反対事象とセットで考えます。また、ラフな仮説を作るために常識を疑い、新たな情報との組み合わせや発想を止めない工夫が役立ちます。極端な仮定の質問や一見ばかばかしい質問、否定形を作ることによって常識をリセットし、価値ある組み合わせを見つけます。さらに、「だから何が言える?」「他に何があるか?」といった継続的な発想が重要です。 仮説検証のポイントは? 仮説の検証においては、必要な検証の程度を見極めた上で、フレームワークの活用と情報収集を行い、分析します。また、仮説の肉付けや方向転換も検討します。仮説思考をリードするリーダーとしては、率先して行動し、質問を投げ、チームで役割を分担することが求められます。さらに、自分の生きがいやパフォーマンスを再確認するリーダーシップも重要です。 購買の実態をどう見る? 購買プロセスとしての5Aカスタマージャーニーでは、認知、訴求、調査、行動、推奨の各ステップを踏みます。購買が必ずしも目標ではなく、SNSなどでの愛着共有や拡散が重要視されます。企業発信よりも、顧客からの発信が心に響くため、その点を重視します。 募集戦略はどう練る? 教育カリキュラムの構築と生徒募集活動の二つの側面で仮説思考と検証を行います。特に生徒募集活動に関しては、5Aカスタマージャーニーを考慮し、広報活動に活かします。知識を「耕す」ためには、ノートにまとめ、実践し結果を記録していくことが大切です。さらにフレームワークを積極的に活用し、チームと共有することや、リーダーとして建設的な質問を投げることが求められます。

データ・アナリティクス入門

仮説と実践が創る成長の軌跡

検証プロセスはどう進む? まず、検証のプロセスは「問題の明確化(what)」「問題箇所の特定(where)」「原因の分析(why)」「解決策の立案(how)」という4段階に分解されています。これにより、検証を行う側も結果を伝える側も、内容を分かりやすく把握することができます。 仮説は何で生まれる? 次に、仮説検証では、なぜ問題が発生するのかという問いに対して、最初は考えを絞らずに複数案を出してみることが重要です。その際、フレームワークを活用して、情報が抜け落ちたり重複したりしないようにすることで、双方にとって理解しやすい検証が可能となります。 比較はどう整理すべき? また、比較検証を行う際は、必ず同じ条件下で情報を整理することが求められます。同じ基準で比較しないと、結果に誤差が生じやすいため、グルーピングの段階から条件を揃える工夫が必要です。 知識のアップデートは? さらに、一般常識や最新のニュースに目を向け、常に学び続けることが大切です。自分の判断基準が古く、発展しなくなると検証能力は向上しません。 モノづくりの課題は? 普段取り組んでいるモノづくりの研究・開発現場では、商品コンセプト、技術・性能・品質、コスト、人材育成など、さまざまな分野の問題を分解して検証しています。問題が数多く存在するため、優先順位をつけることが重要です。自分ひとりで作業するわけではなく、誰もが納得できるような優先順位の付け方や見せ方に工夫を凝らしています。現在は、特にコストの問題を最優先して取り組んでおり、若手には楽しい商品開発の役割を担ってもらっています。 成果をどう伝える? 仮説を立てながら、ChatGTPの助けを借りつつ情報を整理・検討するプロセスは非常に有意義です。その結果を他者に伝え、納得が得られるかどうかを検証の一つの指標としています。 出張準備は万全? また、7月から8月にかけて海外出張を予定しており、その準備として自分の考えを整理し、誰もが納得できるストーリー作りと、事実に基づいた情報収集に努めています。出張先で提示した問題定義に対する回答を、秋頃に成果物として検証する計画です。

データ・アナリティクス入門

検証と比較で広がる学び

分析の目的は何? 分析の本質は比較にあると実感しています。何のために分析を行うのか、もう一度立ち返り、プロセス、視点、アプローチを意識することが大切です。複数の仮説を立て、様々な切り口から問題にアプローチすることで、見落としがちな問題点も網羅することができると感じます。 データ分布はどうなって? 全体像を把握するには代表値の比較が有効ですが、同時にデータの分布がどのようになっているかもしっかりと確認する必要があります。抜け漏れがないか、条件反射に頼らずに注意深くチェックすることが肝心です。また、標準偏差の変動は、株のボラリティに似た感覚で捉えています。 検証の手順は? 仮説は何度も繰り返して検証すべきで、すぐに答えを出さず、切り口に抜け漏れがないかを再点検することが重要です。問題点を明確にするためにはデータを見える化することが効果的で、これによって次のアクションやステップを取りやすくなります。データの判断目的やその見せ方にも気を配る必要があると感じます。 打ち手の成果は? 特に、ある動画で打ち手の費用対効果について触れられていたことが印象的でした。これまで「どの打ち手を優先するか」が重要だとは考えていましたが、実際にその打ち手を実施した際のリターンまで考えるという視点は、私自身の経験上、一度も考えたことがありませんでした。ファイナンスの考え方であり、その入り口ともなる新たな発見に、深く感謝しています。 時間の使い方は? また、他の社員より明らかに時間を要している業務があると感じています。正直なところ、その業務が自分に向いていなかったり心理的に好ましくなかったために、時間がかかると言い訳をしていた自分がいました。しかし、他者との比較を通して、行動前の準備段階で何か問題があるのか、結論から逆算するなど、対策案の仮説やシミュレーションを実際に試している最中です。 改善策はどうする? 現状をしっかりと把握し、問題点を見つけるとともに、どのような状態にすべきかを工程を逆算しながら検証しています。苦手な業務の改善につなげるため、うまくいかなかった場合はさらなる仮説を立て、柔軟に対応していくつもりです。

データ・アナリティクス入門

振り返りに潜む解決のヒント

問題解決の始め方は? 問題を解決するためには、まず「何が問題か」を明確にし、「どこで」発生しているのかを特定します。その上で、原因を分析し、解決策を考えて実行するという4つのステップ(What、Where、Why、How)を意識することが大切です。 状況把握のコツは? また、状況を整理するためのツールとして、3C(顧客、競合、自社)や4P(製品、価格、販売場所、宣伝)を活用する方法があります。これらのツールを用いると、事業の強みや改善すべき点がより具体的に見えてきます。 仮説は何故必要? 問題の原因をつかむには、一つの仮説に絞るのではなく複数の仮説を立てることが有効です。異なる視点から仮説を構築し、その後に実際のデータを収集して検証することで、問題を多角的に理解し、正確な解決策に結びつけることができます。 データはどう取得? データ収集においては、信頼できる情報源から、偏りのない意見を得る工夫が求められます。誰に、どのように質問するかを工夫し、整理したデータをもとに検証を進めることで、反論を排除しながら正確な分析が可能となります。 相談対応はどうする? 実際の業務では、他部署から「業務がうまくいかない」という相談を受けることがあります。そうしたときは、まず問題の所在を整理し、どこでどんな問題が発生しているのか、またその原因を明らかにします。そして、仮説を立てた上でデータ収集と検証を行い、説得力のある解決策を提案できるように心がけています。 体制強化はどう考える? 日常の業務において、問題解決の4ステップを意識的に実践し、仮説を立ててデータに基づいた検証を行うことで、より効果的なサポート体制を構築できると実感しています。また、3Cや4Pなどのツールを定期的に活用し、背景や業界の状況を把握しておくことも、今後の課題解決に大いに役立つと考えています。 振り返りの秘訣は? 最後に、解決策を実施した後は、その結果を振り返り、どのステップや仮説が効果的だったのかを検討することが重要です。これにより、次回の対応に向けた改善点を明確にし、継続的なスキル向上につなげることができると思います。

クリティカルシンキング入門

イシューの本質を見抜き、問題解決に挑む

問題解決の問いは何か? 戦略策定ケースを通じて、どのような問いを立てるべきかや、打ち手をどう打つかという貴重な経験を得ることができました。特に学びになったのは、まず最初に問いを立てることの重要性です。業績が伸びないといった大きな問題を解決する際には、問題の構成要素(単価、来店客数、店舗数など)の整理、いわゆる構造化と、自社の現状を把握することが必須です。その中で打てる打ち手を、分解した課題ごとに考えていくことや、状況によってイシューが変化することも学びました。 クライアント分析の着眼点 クライアントの状況を分析し、「何が課題なのか」を発見した上で打ち手を考案していく場面では、必ずイシューを押さえた上で打ち手を考案するように心がけます。また、自分自身もクライアントの就業環境に関するプロジェクトや幅広い年代の活躍を推進するプロジェクトに参加しているため、そこでの行動にも今回の知識を活用していきたいです。 会議でのファシリテーション術 会議のファシリテーションをする際もイシューの設定や、イシューを常に押さえていることが重要だと感じました。「このイシューで合っているか」を仲間と検証しつつ、意見や会話の方向性がイシューとずれている場合は修正するように心がけます。 情報収集の重要性とは? 思考を始める際には、「イシューは何か」をまず考える癖をつけます。そのイシューが本当に適切かどうかの精度を高めるため、チームで情報共有しフィードバックをもらいながら仕事を進めることも重要です。適切なイシューの設定及び打ち手を特定するには、マーケット全体や自社の状況など多様な情報を持っている必要があると感じたので、これらの情報を積極的に収集する癖をつけること、「この情報がないと適切な問い設定ができない」という視点を持って問題解決に臨むことを意識しています。 打ち手を遂行する際の心得 実際に決定した打ち手を打つ際、行動の中で方向性が見えなくなることもあるでしょう。その場合、「このイシューに基づき、こういう効果を期待して行動している」という点を意識し直し、最後まで打ち手をやり遂げることが大切だと感じました。

データ・アナリティクス入門

ナノ単科で挑む仮説の実践

仮説って何? ビジネス現場での仮説とは、ある論点に対する暫定的な答えを示すものであり、大きく「結論の仮説」と「問題解決の仮説」に分けられます。状況に応じて、過去・現在・未来それぞれで仮説の内容が変わる点も特徴です。 解決と結論は? 問題解決の仮説は、具体的な課題に対して原因を究明するためのものです。一方、結論の仮説は、たとえば新規事業においてある論点への暫定的な答えを示す際に用いられます。 4ステップの流れは? 問題解決のプロセスは、次の4つのステップで進めます。まず、Whatとして問題が何であるか、またその規模を把握します。次にWhere、すなわち問題の所在を特定します。その後Whyとして、なぜその問題が発生したのか原因を追及し、最後にHow、どのように対策すべきかを検討します。 仮説はどう練る? 仮説を立てる際には、決め打ちせず複数の仮説を考えることが重要です。異なる観点や組み合わせから仮説を立てることで、情報の扱いに網羅性が生まれ、柔軟な解決策を導く助けとなります。 現状把握は大事? 施策の検討では、すぐに解決策に飛びつかず、まずは現状を十分に把握することが求められます。たとえば、見込み顧客を効率的に集めたい場合、SEO対策やウェビナーをすぐに試みるのではなく、なぜ見込み顧客が増えないのか、実際に問い合わせをしてくれる顧客の層やニーズを確認した上で仮説を立て、ABテストなどで検証するプロセスが大切です。 営業仮説の効果は? また、営業面においても、現状の状況・業務上の問題・その影響、そして解決された場合のメリットを問い直すことで、仮説の思考は効果を発揮します。これは、営業メソッドであるSPINの各質問(状況質問、問題質問、示唆質問、解決質問)とも通じる考え方です。 顧客行動はどう見る? さらに、顧客の行動分析の際は、カスタマージャーニーマップを作成するにあたって、こちらの期待する行動ではなく、顧客のインタビューを通じた実際の行動パターンをデータ化・可視化し、どのステップで課題が生じているかを明確にすることが重要です。

データ・アナリティクス入門

仮説思考で成果を引き出す方法を学んで

仮説思考をどう浸透させる? 今回の学びで、仮説とは何か、その明確な答えと種類について理解を深めることができました。これにより、今後同僚に仮説思考を浸透させる際に非常に役立つ知見を得られました。 データ収集の重要性とは? 特に印象に残ったのは、仮説を検証する際には都合の良いデータだけでなく、そうでないデータも集めることの重要性です。これは当たり前のことですが、自分の仮説を成立させるために都合の良いデータを集めがちであることに気づかされました。また、仮説を用いて社内外のステークホルダーを説得するには、多くの状況証拠を集めて分析することの重要性を再認識しました。 行動を深める仮説活用法 私は仮説をもって行動することの重要性を感じています。失敗しても「なぜ失敗したのか」を検証しやすくなるためです。今週の学習では、仮説を正しく用いることで説得力が増し、行動のスピードと精度も上がるという点に感銘を受けました。この学びを次週以降の学習でさらに深めたいと思っています。 成功体験に頼らないためには? 仮説の重要性やその価値を同僚に伝え、仮説思考を普及させることで、事業部の政策決定や担当者の行動が効率化されることを期待しています。過去の成功体験に依存する傾向がある事業部では、なぜ成功したのか、そして今も通用するのかを検証せずに同じ施策を繰り返しがちです。これは「問題解決の仮説」ができていない証と考えます。仮説思考の重要性を学んだので、これまでの取り組みを再考したいと思っています。 キャンペーン効果の再評価を 具体的には、事業部が定期的に行うキャンペーンやインセンティブについて、その効果を費用面だけでなく当時の外部環境も踏まえて検証しようと思います。これまでは、仲の良い同僚や上司と問題提起を行い理解を得られていましたが、それを全体に普及させることはできていませんでした。次週以降の具体的な方法を適用するための準備として、多様なデータを集めることから始めようと思います。その際、都合の悪いデータも取得することを忘れずに行いたいです。この週の気づきを早速実務に反映していきたいと思います。

「分析 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right