データ・アナリティクス入門

目的と仮説で切り拓く分析の道

目的と仮説の意義は? 分析のプロセスを学ぶ上で大切だと感じたのは、まず目的と仮説の設定の重要性です。初めにしっかりと目的や仮説を設定しておくことで、分析中に迷ったときもその軸に立ち返り、方向性を調整することができます。一方、分析を進める中で既に立てた目的や仮説が現状に合わないことが分かれば、柔軟に振り返って調整・修正することも必要だと実感しました。 伝え方の極意は? また、分析結果を伝える相手を具体的に想定することが重要であると学びました。相手の立場や背景を考えずに分析を行うと、数字の羅列に終始してしまい、メッセージ性が希薄になる恐れがあります。目的設定と結論を伝える相手の明確化が、データ収集や加工、発見のプロセス全体を論理的に整理する鍵となると理解しました。 予想外の結論は? 一方で、講義の中でビッグデータの扱いに際し、予想外の結論が導かれる場合があるという点に、不安も感じました。どのような分析でも、蓋然性の高い結果かどうかの検証や、批判的に結果を捉える視点は欠かせません。こうしたリスクを回避するためにも、分析は一人で完結させるのではなく、周囲とのコミュニケーションを大切にしていきたいと考えています。 依頼背景を考える? 私の業務は予算管理で、主に予実比較を担当しています。これまでは、他部署からの漠然とした依頼(例えば「売上の減少」や「費用の増加」)に対し、データが示す傾向をもとにすぐに分析を行うことが多かったのですが、今回学んだ目的と仮説の設定の重要性を踏まえ、依頼の背景をしっかりと把握する必要性を感じました。 積極分析の進め方は? 今後は、例えば売上減少の原因調査において、単に結果だけを追うのではなく、依頼の背景や意図を明確にし、適切な仮説を検証するプロセスを重視していきます。また、一般的な依頼に対しては、既に認識されている問題に取り組むのではなく、未発見の課題や潜在的な問題を先に見つけ出すような、より積極的な分析を目指していきたいと思います。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

データ・アナリティクス入門

生徒集客の裏側を数字で解明!

問題の背景は何? ミュージックスタジオの課題では、3W1Hのプロセスを通じて、何が足枷になっているのか、またどのような取り組みが利益に結びつくのかを多角的に分析することができました。さまざまな背景を考慮する中で、問題点が浮かび上がり、どの対策を最優先すべきかを判断する難しさを実感しました。 生徒数増加の課題は? 「生徒数を増やすこと」が売上向上に寄与すると漠然と感じていたものの、原因や具体的な問題点を掘り下げると、考慮すべき要因が多岐にわたることが明らかになりました。一人でその優先度や重要性を選別するのは、非常にハードルが高い作業だと感じました。 対応策は有効か? また、抽出した問題・課題に対する対応策を考える際、今回のイベント開催のように、必ずしも提案が有効に働くとは限らないことを体感しました。そのため、背景にある数値データの分析も併せて検討する必要性を改めて意識するに至りました。 MECEはどう活かす? 「もれなく・ダブりなく」という言葉は以前から耳にしていましたが、今回初めてMECEという考え方に触れました。データクレンジングの際にも一定の意識はあったものの、「もれなくダブりなくもほどほどに感度のよい切り口をたくさん持っておく」という点に大きな感銘を受けました。 現状と理想のギャップは? 取り組むべき問題に対して、「あるべき姿」と現状とのギャップを埋める方法には、正しい状態に戻す対応と、ありたい姿に到達するための対応の2パターンがあることにも気づきました。業務改善の提案にあたっては、現状が悪いという視点だけでなく、現状の良い部分をさらに伸ばしていく視点も取り入れていきたいと感じました。 集客対策はどう検証? 最後に、ミュージックスタジオの事例では、計画通りに生徒を集めることができなかったことが利益に結びつかなかった要因として挙げられていました。これからは、具体的にどのような対策を講じることで生徒を集められるのか、さらに深掘りして考えていきたいと思います。

データ・アナリティクス入門

仮説で解く!未来への挑戦

仮説分類はどう理解? 仮説の分類について学んだことで、結論の仮説と問題解決の仮説という二つの考え方を理解することができました。結論の仮説は、ある論点に対して仮の答えを示すもので、たとえば、ある飲料メーカーがノンアルコール商品の健康面へのアピールを通じて客層を拡大した事例が印象的でした。一方、問題解決の仮説は、現状の現象から原因を究明し、対策や予防策を講じるための仮説であり、データの収集と分析能力の向上が不可欠であると感じました。 仮説で説得力は増す? また、仮説を立てることで検証マインドが育ち、他者に説明する際の説得力が増すことを実感しました。エビデンスに基づく行動が、具体的な改善策の実現を後押しすると考えています。 減少原因は何? 具体的な事例としては、まず勤務先の大学において、受験者数が過去4年間で大幅に減少している現状があります。この原因を解明し、定員確保につなげるためにも、仮説の活用が大変有効だと感じています。 精神問題はどう見る? さらに、偏差値の高低にかかわらず、精神的な問題を抱える学生が増加している点にも直面しています。ADHDやASD、ゲーム依存などの問題が見られ、これが原因で学生間や教職員とのトラブル、保護者からの苦情、さらには退学や留年の増加につながっていると考えています。これらの現象について、過去の研究や調査、実践活動報告を参考にしながら、本学での適切な対策を検討するために、問題解決の仮説を立てて取り組む必要があると思います。 対策の進め方はどう? 具体的には、まず学生相談室や担任、教職員へのアンケートを実施し、各部署からの情報を集約します。次に、問題とされる事案の件数や種類、これまでの対応内容とその結果を整理し、国のガイドラインやマニュアルと照らし合わせることが求められます。さらに、他大学で実施されている取り組み事例を調査し、本学で実施可能な対策案を策定します。その際、専門知識を持った人材や協力可能な関係機関との連携も視野に入れる方針です。

データ・アナリティクス入門

仮説構築で新たな視点を得る方法

仮説構築の秘訣は? 仮説を構築し、データを活用して問題解決を進めるためには、いくつかのステップが重要です。まず、問題の発生箇所を明確にすることが必要です。具体的には、問題の所在を深掘りするために、原因仮説を立て、検証のためのデータを集めます。仮説を効果的に立てるためには、フレームワークの活用が有用です。 4Pのポイントは? マーケティングの視点では、4Pフレームワークを使って事業展開を整理することができます。製品、価格、場所、プロモーションの各要素が顧客のニーズや適正かどうかを評価します。適切なデータを集める方法としては、既存データの活用やアンケート、インタビューが挙げられます。各手法の長所と短所を理解して、目的に応じた選択が求められます。 多角的検証は? 仮説を立てる際には複数の仮説を用意し、異なる視点から網羅的に検討することが大切です。仮説の検証に際しては、比較の指標を意識的に選択することが必要です。具体的には、データを収集・分析し、仮説に説得力を持たせるためには、反論を排除する情報まで検討することが重要です。 意義はどこに? 仮説設定の意義としては、検証マインドや問題意識の向上、迅速な対応が可能となる点が挙げられます。こうしたプロセスを経ることで、自分の業務に対する関心を高めることにつながります。 販促の効果は? 販促企画の効果検証や販売目標達成の実績を見る際には、売り上げが伸び悩んでいる商材を特定し、どの要素に問題があったのかを4Pを用いて検証することが求められます。これを元に具体的な施策の効果を評価し、次の糧とすることが重要です。 実績比較はどう? 販売実績を基に、商品ごとの実績を昨年と比較し、価格変動の影響や来客数の動向、プロモーションの効果を定量的に評価すべきです。それにより、次年度の方針を検討することが可能となります。このように、精緻な分析を通じて課題を明確にし、解決策を打ち立てるための指針とすることが重要です。

データ・アナリティクス入門

購入プロセスを深掘りして見える学び

プロセス分解はどう? 原因の分析では、プロセスに分解することが重要です。商品が購入される際には、生活者は多様なプロセスを経ており、これらのプロセスには様々なパターンがあります。まず、これらのパターンを分類し、さらにプロセスごとに分けて考えると良いでしょう。候補を絞り込む際には、まず広い視点で選択肢を洗い出し、その上で排除する根拠を準備します。 仮説はどう立てる? 原因仮説を立てるときは、思考の範囲を広げることがポイントです。ここで役立つのがフレームワークと対概念の活用です。例えば、3Cフレームワークは自社、競合、顧客の観点から分析します。一方、対概念では競合を超えた広い範囲、例えばカテゴリ市場などで仮説を立てることができます。複数の案を比較・検証する際には、条件を揃えて判断することが求められます。 購入プロセスは? 商品が購入されるプロセスとしては、ブランド力がある場合を除けば、次のような流れがあります。まず、商品が目に留まり(パッケージの印象)、次に興味を引き(パッケージ表面の文言)、さらに商品説明を読んで納得し(手に取る)、最後に購入される(かごに入れる)。購入後、消費者に良い商品体験を提供することでブランドイメージが形成され、繰り返しの購入につながります。リピーターが少ない場合には、この商品体験がプラスイメージでない可能性が考えられます。一方で、販売場所が十分にあるのに新規顧客が増えない場合には、このプロセスに分解して原因を特定すべきです。仮説は3Cに加え、それ以外の視点からも考えることが大事です。 魅力の伝え方は? また、どのような商品が消費者の目に留まるのか、どのようなキャッチコピーが購買意欲を刺激するのか、一般の消費者と商品ターゲットの購買プロセスについて理解を深める必要があります。そのためには、まず自身が商品を購入する際に何を基準に判断しているのかを考えることを心掛けると良いでしょう。さらに、店頭観察やアンケート調査を実施することもおすすめです。

データ・アナリティクス入門

問題解決のプロセスを極めた学び

どうやって問題を整理? 問題解決の第一歩は「何が問題ないのか」を具体的に整理することです。この際、関係者間で「あるべき姿」と「現状」に対する共通認識を持つことが重要です。基本的な流れは、①「何が問題か?」②「どこに問題があるか」③「なぜ、問題が起きているか」④「どうするか」ですが、必ずしもこの順序に縛られる必要はなく、各ステップを行き来することが求められます。 ロジックツリーは有効? ロジックツリーの活用により、全体像を意識しやすくなります。MECE(Mutually Exclusive, Collectively Exhaustive)の考え方に基づいて、意味のある方法で問題を分けることが肝要です。 売上回復の道は? 売上が低迷している商品のリニューアルを考える際には、売上を回復させる目標を新規購入者の獲得なのか、離脱者の呼び戻しなのかによってターゲットやパッケージの方向性が変わってきます。関係者間で売上回復の基準を共通認識として持っていることが必要です。提案を説得力あるものにするためには、MECEを活用して効果的な方向性や代替案を提示します。 市場分析は足りる? プロダクトアウトの新商品の方向性を検討する場合には、市場分析が不足している段階で商品化が決定されたケースもあります。例えば、コンセプト調査を行ったものの生活者の反応が芳しくない場合、ロジックツリーを通じて問題の仮説を立て、検証し、解決策を模索します。 選択肢は適切? アンケート調査では、選択肢設定にMECEを用いることで効果的な結果を得ることが可能です。 プロセスの流れは? 商品化作業に取り組む際のプロセスは以下の通りです。まず、問題の共通認識を揃えるためにデータ収集を行い、関係者間で問題認識を共有します。次に、チームでロジックツリーを用いて網羅的に「Where」「Why」「How」の案を出し、それに基づいて方向性の第一候補と代替案に絞り込みます。その後、経営陣にこれを共有します。

データ・アナリティクス入門

平均スコアだけじゃ見えない真実

講義の学びは? 今週の講義では、「目的を持った分析」「比較による分析の有効性」「データ加工時の注意点」という三点について学びました。この中で、特に印象に残ったのは「データ加工時の注意点」です。 数値評価はどう理解? 講義中には、具体例として「商品スコアを単純に平均することへの違和感」が示されました。普段、商品レビューの数値評価を何気なく見ることが多いですが、実際はその数値に明確な定義がなく、平均をとるだけでは本当に知りたい情報が得られない可能性があると感じました。 加工注意点は? 例えば、壊れやすい商品であっても、デザインの良さだけを理由に最高評価をつける場合があります。そのようなデータを基に商品を選んでしまうと、「壊れにくい商品」を求める利用者は、平均スコアに惑わされる恐れがあります。このように、データを有効に活用しようとしても、加工や解釈を誤ると誤った結論を導いてしまう点に、データの恐ろしさを感じました。 業務データの活用は? また、私の業務では会員情報や購買履歴、アプリの行動ログといったデータを扱う機会が多いです。これらのデータは、抽出方法や加工の手法次第で結果が大きく変わるため、目的が曖昧な状態で扱うと、分析結果の解釈に迷いや無駄な検証を重ね、多くの時間を費やしてしまう危険性を実感しました。 目的を再確認? 今回の講義を通じ、「何を明らかにしたいのか」という目的を明確に持つこと、そして、データの数値が何を意味しているのかを常に意識しながら扱う重要性を改めて認識しました。今後は、単なる抽出や加工を目的とせず、分析の意義と加工方法の妥当性を見極めながら、効率的で意味のあるデータ活用に努めていきたいと考えています。 基本はどう捉え? さらに、今回の学習では、データの加工技術だけでなく、データマネジメントの基本や見落としがちな常識に重点が置かれていました。今後の授業でも、こうした基本部分を特に重視して学んでいきたいと思います。

戦略思考入門

フレームワーク活用で納得の企画を!

フレームワークはどう活かす? 1点目は、フレームワークを活用することで視野を広げ、視座を高めた思考ができることです。特にSWOT分析は、外部環境と内部環境の両面から分析することで、課題を高い解像度で分析できます。ただし、フレームワークの活用が目的化してしまうと、相手に納得されにくい内容になる可能性があります。そのため、自身が整理した内容を相手が納得できるよう、論理的かつ合理的にストーリーを構築し、フレームワークに落とし込む必要があります。フレームワークを適用するだけでなく、それを周囲と共有して納得できる内容かどうかを検証することが重要です。また、必要に応じて周囲を巻き込んで一緒にフレームワークを考えることも重要です。 完璧追求はどう? 2点目は、完璧を追い求めすぎないことも重要です。精緻にまとめることにこだわりすぎるよりも、考えたフレームワークを検証し、実践することが重要といえるでしょう。 組織戦略で考える? 次に、自分の考えを戦略的にまとめるのではなく、「組織」としての考えを戦略的にまとめて実行できるようになりたいと考えています。企画業務を進めるうえで、ただ「自身がやりたいこと」の視点で考えるのではなく、SWOT分析などで外部環境や内部環境を整理し、周りが納得できる企画内容を考える必要があります。考えは多種多様であるため、自分だけで考えることにこだわりすぎず、関係者にヒアリングするなど、周りをうまく巻き込みながら考えることが求められます。そのためには、思考力のほか、リーダーシップ、傾聴力、折衝力に加え、関係者との良好な関係性を築く人間性も重要だと考えています。 意見交換は大切? 最後に、企画内容が自分よがりにならないよう、フレームワークを活用して適切に分析し、関係者との日々のコミュニケーションを積極的に取り、意見交換しやすい環境を作ることが大切です。企画が1回の提案で通るとは限らないため、複数回議論できるようスケジュールに余裕を持たせることも重要です。

データ・アナリティクス入門

本質を問い、解決へ進む一歩

問題解決はなぜ重要? 問題解決のステップである「What・Where・Why・How」は、根本的な課題解決力を高めるための重要なフレームワークであると改めて実感しました。問題解決を急ぎすぎると、いきなり「How」に飛びついてしまい、問題の本質を見失った対策に陥るリスクがあります。そのため、各ステップにおいて「なぜこの工程が必要なのか」を意識しながら、丁寧に取り組むことが必要だと感じています。 分析の目的は何? また、分析を行う際には、対象データやその性質、進行中のステップに応じ、複数の切り口やフレームワークを柔軟に活用することが大切です。視野を広げ、多角的な考察を実施する姿勢が求められるとともに、目的意識が明確でなければ、どれほど緻密な分析も意味をなさなくなります。分析の際は、「なぜデータ分析をするのか」「どの課題を解決すべきか」をはっきりと定めたうえで取り組むことが肝要です。 どう活かすべき? 今回の学びを活かせる具体例としては、施策の検証やシミュレーション、数字の未達や達成要因の分析、データの可視化やダッシュボードの作成と管理などが挙げられます。これらの業務においても、問題解決の各ステップを意識することで、仮説思考や多角的な視点を補完し、抜けや偏りのない網羅的なアプローチが実現できると考えています。 情報共有はどう? 特に、作成したダッシュボードを部署内で共有し、全員が直感的に課題やポイントを理解できるよう、視認性や意味を重視したデータの加工・構成を工夫することに取り組んでいます。今回学んだ内容は、実践と定期的な復習を通じて、他者に説明できるほど深く理解し、業務の中で確実に活用していきたいと思います。 学びを続けるには? この学習を一度限りのものとせず、継続的な行動として定着させるため、問題解決の各ステップを意識しながら、クリティカルシンキングやヒューマンスキルといった幅広いビジネススキルの向上にも努めていきます。

アカウンティング入門

P/Lに見る価値と現実のバランス

損益計算書の意味は? Week02では、損益計算書(P/L)の構造と意味合いから、企業の儲けの仕組みを読み解く視点を学びました。P/Lは単に収益や費用、利益の関係を示すのではなく、事業活動の結果として、どのように価値を生み出し、どのようなコスト構造を採用しているかが表れていることが理解できました。 カフェ事例に疑問は? 授業内での事例では、異なる提供価値がP/Lにどのように反映されるかが明快に示されました。あるカフェは「非日常の贅沢体験」を提供するため、客単価が高いものの内装や人件費などの費用も大きく、利益が出にくい構造でした。一方、別のカフェは「日常の小さな休息」をコンセプトに、費用を抑えながら安定した需要を捉えるモデルで成り立っていました。 選択の重みを知る? この比較から、P/Lを数字だけでなく、提供価値と費用構造の関係を踏まえて読み解く重要性を再認識しました。利益は単なる数字の結果ではなく、価値創出と費用配分の選択の積み重ねそのものであり、P/Lはその選択の結果を客観的に示すツールであると感じています。 自社評価の視点は? 学習を踏まえ、まず自社の損益計算書を「提供価値との整合性」という視点で評価したいと考えています。自社が市場にどのような価値を提供し、その価値を実現するためにどのような費用構造を採用しているのかを整理することで、収益の源泉や改善の余地を立体的に把握できると考えています。売上や利益の数字だけではなく、事業活動の実態(定性的な面)と財務データ(定量的な面)がどの程度一致しているかを確認し、今後の議論や提案の基盤にしていきたいです。 労組の分析を考える? また、労働組合の収支計算書についても、損益計算書と同様の視点で分析する予定です。組合活動が提供する価値と費用の使い方が適切に結びついているかを検証することで、事業活動とは異なる角度からも、持続可能な運営や会員への価値提供のあり方を考える材料としたいと考えています。

データ・アナリティクス入門

仮説を駆使して問題解決力を高めよう

問題解決のステップとは? 問題解決の4つのステップの「Where」は、問題の所在の仮説を立てることであり、「Why」に繋がっていく。今回はその「Where」について学んだ。 仮説の立て方とは? 仮説とは、ある論点に対する仮の答えもしくは、分かっていないことに関する仮の答えである。重要なポイントは、複数の仮説を立てることと、それらの仮説同士にある程度の網羅性を持たせることである。また、仮説を検証するためのデータを評価する際には、何を比較の指標とするか、意図的に何を見るかを考えることが求められる。そのため、数字を計算する手間を惜しんではならない。 検証マインドをどう育む? 仮説を考えることで、検証マインドの向上と説得力が高まり、関連することを調べることによって意思決定の精度も高まる。結果としてステークホルダーに対する説得力が向上し、問題解決のスピードもアップできる。アンケートなどを活用して情報を総動員し、考えることが重要である。また、「3C」や「4P」などのフレームワークを活用することも効果的である。 データ分析の重要性とは? データ収集においては、都合の良いデータだけを集めるのではなく、可能性を排除するために真剣にデータと向き合い、何と比較しての分析かを明確にする必要がある。会議資料や上長への報告を見返すと、実績や結果については真剣にデータを集めているが、データを元にした仮説設定や計算はほとんど実施されていない状況であった。結果だけを羅列するのではなく、それを根拠に仮説を立てるための計算や比較を行い、他の説を排除する仮説を設定することで、施策の根拠とし納得感を得られるようにする。 明日への準備は万全か? 明日が月初なので出てくる数字を元に、結果に対する複数の仮説を立て、その仮説に対する根拠を数字で計算・調査した上で問題解決の手段を考える。アンケートやヒアリングを日々実施しているが、分析に役立つアンケートとなっているか見直しも必要だ。
AIコーチング導線バナー

「分析 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right