データ・アナリティクス入門

原因探求から始まる成功への道

どうして原因分析をする? 問題解決のステップであるWhat、Where、Why、Howの流れが非常に印象に残りました。特に、どうしてもHowの部分に注目しがちですが、その前の段階で問題を明確にし、原因をしっかりと特定して分析する過程こそが、本質的な解決につながると感じました。 なぜ退会が増える? また、コミュニティ運営において退会者の増加という現象を分析する際にも、このステップが有効であると考えました。「なぜ退会が起こるのか」という問いに対し、まずは原因の仮説を立て、問題を具体的に洗い出すことが大切だと思います。 なぜ数値化で解決? そのため、現状、退会時に取得しているアンケート結果を活用することが有用だと感じます。アンケートの内容を分析し、所属期間中に行われたイベントなどの傾向と照らし合わせることで、理想的な状態とのギャップが明確になるのではないでしょうか。ギャップを数値として示すための具体的な指標についてはまだ模索中ですが、数値化が進めば対策の策定もより容易になると感じました。

データ・アナリティクス入門

効率的な資料作成で業務改善!

分析を効果的にする方法は? 分析の本質は比較にあります。具体的な要素を整理し、比較対象や基準を設けて、きちんと比較することが重要です。また、条件がそろっていない場合には想像力を働かせて補完することも必要です。 資料作成の時間短縮には? 目的を理解して分析を行うことが大切です。販売計画の部署にいる後輩たちに対して、分析の基本を踏まえたアドバイスをします。例えば、資料にグラフをたくさん載せて資料作成に時間がかかると嘆いている後輩の資料をチェックし、本来の目的は何か、仮説は何かを一つ一つ確認していくことです。 カイゼンプロジェクトの課題解決策 現在進行中のカイゼンプロジェクトでは、「資料作成に時間がかかりすぎている」「この資料作成は本当に必要か」といった課題があります。これらの問題を解決する方法の一つとして、目的をしっかり確認し、仮説を明確にしてから資料を作成するというアプローチを取り入れることが有効です。目的を明確にした上で、仮説を立て、必要な資料を作成する重要性を後輩たちに伝えることが必要です。

データ・アナリティクス入門

データ分析と仮説思考で売上UPを目指す

3Cと4Pをどう活用する? 複数の仮説と網羅的な思考を持つことを学ぶことができました。また、市場、競合、自社(3C)、製品、価格、場所、プロモーション(4P)を意識した仮説構築の重要性も理解しました。データの収集方法については、本当に対象者からのデータなのか、アンケートなのか、口頭なのか、数値なのか、きちんと比較するための収集といった意識も重要だと感じました。 売上向上のための分析法は? 現在、売上が思うように伸びず、分析検証フェーズに入っています。そこで今回学んだ仮説の立て方やデータの取り方を意識しながら、数値を見ていきたいと思います。また、前回のグラフの最適化も考慮に入れつつ、精度の高い分析・検証を行いたいです。 新たな施策提案に必要な視点 さらに、昨年10月から今年6月までの流入数や購入数、広告費などの数値をしっかりと活用し、相関や因果関係を見つけ出し、仮説思考を組み合わせて新しい施策や提案を行いたいと考えています。様々な仮説を一つずつ検証し、網羅的な分析も合わせて行いたいと思います。

データ・アナリティクス入門

目的を見据える分析の一歩

どんな学び方がある? 今週は、正直何をすればよいのか、どう学び、どのようにグループワークを進めればよいのかが分からず、新しいインプットがほとんど得られなかったため、少し物足りなさを感じました。もっと手を動かして分析に挑戦してみたかったという思いがあります。 目的を見いだすコツは? 目的を明確にして分析を始めることが大切です。一つのデータや事象に固執せず、視点を変えて全体を俯瞰しながら取り組む姿勢が求められます。常に目的を意識し、仮説検証が難しいときは生成AIの力も上手に活用していくことが重要だと感じました。 目的をどう守る? また、仮説思考でクリティカルに考える習慣を身につけるため、業務に取り組む際には常に目的を意識する必要があります。部下が目的を見失わないよう、状況確認を行うことも意識して取り組んでいかなければなりません。 広報の立ち位置は? 現在の広報業務においては、この仕事がマーケティングファネルのどの位置にあたるかを常に考えながら進めていくことが求められると強く感じています。

データ・アナリティクス入門

データ分析で役立つ具体的アプローチ

分析の流れをどう把握する? 分析とは、目的、仮説、問い、そしてデータ収集・加工を行うという流れをきちんと把握することが重要だと感じました。また、インパクト、ギャップ、トレンド、ばらつきなどの各因子を鑑みたうえで数値を見ていくことが必要であると理解しました。 代表値の注意点とは? 何かとすぐに飛びつきがちな代表値の中でも、特に単純平均値には注意が必要です。業務では、サイト流入数や売上など様々な数値を見る機会が多いため、一つの代表値だけでなく、多様な代表値を目的をもって算出したり、散らばりを意識した分析を行いたいと感じました。 データ収集のポイントは? 日次、週次、月次など期間を定めた上で、数値の意味を考えたデータ収集や分析を行うことが重要です。過去のデータを活用しながら自分なりの仮説を立て、今回学んだフロー(目的→仮説・問い→データ収集→検証)を実施していきたいです。また、インパクト(重み)、ギャップ(差異)、ばらつき(分布)といった視点を意識しながら、数値の意味を考えていきたいと思います。

クリティカルシンキング入門

未来を拓く振り返りの力

分析の目的は? 分析を進める際は、単に計算のしやすさで切り分けるのではなく、何のために分析するのかという目的意識が大切だと学びました。そのため、まずは仮説を立て、複数の切り口から考えることが求められます。結論が出たと感じても、再度丁寧に見直すプロセスが重要です。 視覚化の効果は? また、分析した結果を有効に活用するためには、視覚化が不可欠です。データをグラフや図表で表現することで、「目に仕事をさせる」効果が高まり、情報がより伝わりやすくなります。 行動予測はどう? 具体的には、お客さまの行動予測の場合、過去の実績データをもとに、締結チャネルの変化などを切り口にして分析します。月ごとの傾向を把握し、そこに変化が現れていないか、また今後どう推移するのかを考えることが大切です。 評価の均衡は? さらに、メンバーやスタッフのパフォーマンス評価においては、従来は品質と効率を個別に評価していました。しかし、両者をバランス良く満たす適正値を見つけることが、より正確な評価につながると考えています。

アカウンティング入門

数字が語る学びのヒント

事実と解釈は明確? 前回の報告と比べ、今回はPLの内訳についてより具体的に触れられていると感じました。会話と数値だけで状況を読み取ろうと、できるだけ事実をアウトプットすることに努めましたが、その中で得た解釈や気づきについても、追記することで明示することが重要だと実感しました。今後は、事実と解釈を明確に分けて整理するよう心がけたいと思います。 報告改善の方向性は? また、今後の改善点として以下の三つを挙げます。まず、数値報告の際には、数値データの事実に基づいて分析を行い、その結果を踏まえた仮説を立てること。次に、計画作成においては、管理面と財務面の双方から重要項目を押さえ、予実の管理と戦略策定につなげられるようにすること。そして、直近の年次計画策定にあたっては、重点項目について関係各所と目線を合わせるよう努めることです。 実務の学びはどう? さらに、実業務でのPLやBSの取り扱い方、そして今回の飲食店ビジネスモデルから得られた知見も、今後の学びに活かせる点が多く感じられました。

データ・アナリティクス入門

データで広がる学びの可能性

仮説はどう広がる? フレームワークの視点を活用することで、仮説の幅を広げることができます。既存のデータを活用する方法と、新たにアンケートなどでデータを収集する方法の二つがあります。まずは自社や公表されているデータから問題を絞り込み、次に知りたいことを軸に必要なデータを集める流れが重要です。 急変時に何を検証? あるデータが急に増減した場合、時間をかける前にまず仮説を立て、その仮説を裏付けるためにどのデータが必要かを検討しながら分析を開始することが求められます。ひとつのデータに固執せず、同時期の他のデータも合わせて確認することで、多角的な視点が得られるでしょう。 データ整理はどう進む? 業界では多くの公表データが存在しますが、それぞれのデータに何が含まれているのかを把握できていないケースがしばしばあります。まずは各データの整理を行い、その上で社内に共有し、他部署とも同じ視点で把握するよう努めます。直感や経験に頼るだけでなく、データで検証するという姿勢を社内に広めていくことが大切です。

データ・アナリティクス入門

データ分析の新しい視点を得る旅

データ分析の初め方とは? データ分析を開始する際、何も考えずに「とりあえず」データを引っ張ってくることが多いと感じていました。しかし、何を知りたくて、何の目的で分析を行うのかを明確にすることの重要性を改めて認識しました。特に、課題がある場合、その課題の根本を探るためには、MECEを意識して質の良い仮説を立てることが大切だと気付きました。 チームの課題をどう把握する? 毎週提出されるデータを見て、課題がどこにあるのか、そしてその課題に対する現在の立場やGAPを見つけるようにしています。まず、チームとしての課題や目標を確認することが重要です。これが明確になって初めて、どのデータを用い、どのように分析(比較)するのが適切であるかが理解できる気がします。 他社のフレームをどう活用する? 現在、特に明確な課題や問題があるわけではないので、よりよくするために現状と目標を比較しようと考えています。その際には、自社だけでなく、他社や市場で行われている同様の分析フレームを参照することも役立つでしょう。

データ・アナリティクス入門

新たな指標で描くデータの未来

どうしてデータ加工が必要? これまで、データ分析では単純平均や標準偏差、棒グラフ、散布図など、一般的な方法を用いてきました。しかし、集めたデータを適切に加工しなければ、想定していた答えや正確な結果を得るのは難しいと学びました。今後は、必要に応じて加重平均や中央値などをより効果的に活用していきたいと考えています。 どの指標が本当に有効? また、単純平均や標準偏差だけに頼ると、データの見え方が一面的になりかねません。そのため、加重平均や幾何平均、中央値といった指標を取り入れ、どの指標がデータを最も適切に表しているのかを検証しながら分析を進めたいと思います。これまでとは異なる視点からデータが見えることを期待しています。 なぜ仮説検証が重要? 特に、私の業務は問題解決のための分析とあるべき姿の考察の両面に関わるため、その時々で適切な仮説を立て、データの表し方を工夫することが求められます。状況に応じた分析手法を積極的に取り入れることで、より正確なデータ分析に繋げていきたいと思います。

データ・アナリティクス入門

分析の楽しさ!戦略と挑戦の日々

各要素をどう捉える? 分析の肝は、漏れなくダブりなく各要素を洗い出し、比較することで見えてくる事象から仮説を立てる楽しさにあると実感しました。一方で、効率的で分かりやすいツールの習得がまだ十分でないため、その点を今後解消していきたいと考えています。 売上拡大はどう実現? まず、売上拡大のための各種施策の打ち出しが必要です。また、お客様の行動を分析することでアプローチ方法の見直しが求められます。現状の自社商品の強みや弱みを把握し、適正な人員配置や営業行動計画、業務プロセスの見直しを実施するためには、関係各所のリーダーと連携することが重要です。 育成と戦略の見直しは? さらに、スタッフ育成においては、早期に戦力となっていただくための教育制度の見直しを進め、会社の方針や営業目標を浸透させる努力が必要です。加えて、マーケティング施策の見直しでは、離脱要因を特定し改善を図るとともに、他社の事例研究も欠かせません。最後に、営業戦略の再検討を行い、何が効果的であるのかを見直すことが求められます。

クリティカルシンキング入門

仮説検証で視野を広げる思考法

切り口で見える? 複数のデータから一つの仮説を立てる際、切り口を変えると見え方が異なることがあります。これは、文章や言葉だけでなく、数字を分析する際にも思考が偏ることがあり得ると感じさせられました。今見えている情報に基づいて判断することに疑問を持つきっかけとなったと思います。 分析で何が見える? 事務リスク発生の原因分析においては、数値を扱う際の前処理やカテゴライズの過程で切り口を変えることが有効だと感じました。残業時間の増加や処理目標未達成の原因を分析する際にも、同様の手法で切り口を変えてカテゴライズすることで、見過ごされている問題を発見できる可能性があると思いました。 区切ると何が見える? 原因分析時のカテゴライズでは、単にキリのいい数字で区切るのではなく、仮説を立てた上で細かく区切ることが重要です。また、一度作業を終えたらそれで結論とせず、他に考えられる要素がないか一度立ち止まることも大切です。全体の定義を明確にし、漏れや重複がないように意識して区切ることを心がけるべきです。
AIコーチング導線バナー

「分析 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right