データ・アナリティクス入門

実践的経営戦略のスキルアップの魅力

経営戦略の立案方法を学ぶ 今回の講義では、実践的な経営戦略の立案手法について学びました。テキストや動画だけでなく、具体的な事例を交えた説明が非常に分かりやすかったです。特に、組織の強みと弱み、市場の機会と脅威を分析するSWOT分析の手法の紹介は、今後の業務に大いに役立つと感じました。 グループディスカッションの有用性 また、グループディスカッションを通じて他の受講生と意見を交換することで、新たな視点や洞察を得ることができました。このプロセスを通じて、理論だけでなく実践的なスキルも身につけることができました。 具体的なフィードバックの重要さ さらに、講師の具体的なフィードバックにより、自分自身の考え方に対する自信も深まりました。特に、自分たちが立案した戦略がどのように成功するか、仮説の立て方や検証方法に関する深い理解が得られたことは大きな収穫です。 オンライン学習の利点とは? 最後に、オンライン学習の利点として、自分のペースで学べるという点が大きいと感じました。忙しい日常の中でも、柔軟に時間を使って学習を続けることができました。これからも学びを深め、実務に活かしていきたいと思います。

クリティカルシンキング入門

データ分析の新たな視点を発見!

データの見方はどうなる? データの視点やグラフの表示形式が異なるだけで、見方が大きく変わることを実感しました。データ分析を行う際、まず仮説を立て、その仮説に基づいて情報を得るための切り口を考えたいと思います。逆に、他者が行ったデータ分析の結果を見るときは、その結果やグラフをそのまま信じるのではなく、見落としていることがないかを注意深く確認することを心掛けたいです。 顧客アンケートはどう見る? 業務で顧客アンケートを分析する機会が多いため、分析時に複数の観点から試してみたいです。また、サービス改善を設計するときにも、データを根拠にした設計ができるように役立てたいです。特に定性的データ、つまり自由記述のデータをどのように分析していけばよいのか、これからさらに学んでいこうと思います。 定性と定量の使い分けは? アンケート分析に関しては、事業部での週次ミーティングで報告することが多いため、その際には複数の観点からの分析結果を提示できるようにしたいです。また、定性的データの解釈に関しては、単独で分析するのではなく、定量的データと組み合わせて客観的に分析できるように努めたいと考えています。

クリティカルシンキング入門

切り口と仮説で視野を広げるデータ分析学び

数値分析の固定概念を超えて 分析とは、数値を分けて検証することと認識していました。固定概念があり、年齢層は10代ごとなど決まったフレームで対応する傾向がありましたが、データによって柔軟に対応すべきと感じました。今後は、様々な切り口で分析を行うことを決めました。ただし、行う量が多すぎると時間ばかり浪費するので、仮説と検証を繰り返し、仮説力を高めるように努めます。 どのように視野を広げる? 数値検証は、どの分野でも必要です。自社においても多くのデータがあるため、切り口と仮説を意識して活用していきます。数値を扱う部署にいたため、頭が固くなっていると感じていましたが、検証を通じて視野を広げようと思います。会社の中でも分析に期待されている声があるので、この研修を活かせればと考えています。 新規業務にどう備える? 部署が変わってから数値検証やグラフ作成の機会が減少していますが、この研修を受けて学び直し、今後の新規業務に備えたいと思います。ミーシーについては知識としては理解していると感じても、実際に行うと漏れやダブりが発生しがちですので、今後は自分の手法が本当に正しいか常に意識して進めたいと思います。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

データ・アナリティクス入門

数字で見つける仮説と検証の旅

データ検証の重要性は? 総合的な演習を通じて、データをもとに仮説を立て、その後検証する一連のループを体験できました。単に数字を見るだけでなく、What、Where、Why、Howといった視点を意識してストーリーを組み立てる重要性を実感しました。 A/Bテストのポイントは? また、A/Bテストにおいては、比較対象以外のすべての条件をそろえることが非常に重要であると学びました。この考え方は、売上が変化した原因や理由を、経験則ではなくデータに基づいて示す際に大変役立つと感じました。 仮説検証の飛躍は? さらに、仮説から検証への流れを飛ばして結論に至ってしまう傾向があるため、他の可能性や選択肢がないかどうかも十分に検討する必要があると気づかされました。同時に、キャンペーンや広告の有効度を測る際には、測定したい内容以外の条件を同一にすることの徹底が求められるという点も大切だと感じました。 論理構築はどう? 最後に、分析やストーリー作成においては、What、Where、Why、Howを明確にすることで、より論理的で理解しやすい内容にまとめることが可能になると学びました。

データ・アナリティクス入門

データと仮説で磨く解決力

解決策はどう考える? 問題解決のためには、まず原因を明らかにするためのプロセスに分解し、複数の選択肢を立案してから根拠に基づいて絞り込むアプローチが有効です。また、施策の効果を比較しながら仮説検証を繰り返すことで、より的確な解決策へと精度を高めることができます。さらに、データ分析によって問題解決の精度を確実に向上させるため、仮説に基づいたアプローチと新たなデータ収集を組み合わせるという手法も取り入れ、日々その思考を鍛えていくことが大切だと感じました。 仮説検証は何が鍵? 一方、問題解決プロジェクトにおいては実現性を重視するあまり、手軽に実行できる解決策が優先されがちな点に疑問を抱いていました。しかし、仮説検証を通じて得られる新たなデータもまた価値があると認識しています。そのため、事前にどのようなデータ収集や分析が可能かを議論し、リードすることが重要だと考えます。メンバーには、問題解決のステップ全体を共有し、現在の議論がどの段階に位置しているのかを意識してもらうことで、いきなり解決策の立案に飛び込むのではなく、新たなデータを用いた仮説検証を積極的に取り入れていくよう促していきたいと思います。

データ・アナリティクス入門

問題解決を極める!広告業での実践ノウハウ

プロセス分解が鍵となる? 原因の探求について学びました。特に、問題の原因を探る方法としてプロセス分解が有効であることを知りました。問題の箇所を絞るためには、プロセスを詳しく分析し、仮説を立て、その仮説を検証することが重要です。このプロセスには、文データ分析や仮説の検証などのステップが含まれます。 広告の効果検証とは? 広告業に携わる私にとって、こうした方法論は日常的に行っていることですが、改めて体系的に学ぶことの意義を感じました。特に、広告の効果検証においてはPDCAサイクルを用い、データ分析を通じて仮説を立て、その仮説を検証するプロセスが連続的に行われます。この週に学んだ内容は、日々の業務におけるステップのヌケモレの確認に活用していきたいと思います。 仮説の重要性を再確認? データに触れることを日常的に行い、データを一度集めただけで満足せず、常に仮説をブラッシュアップし続けることが必要です。同時に、データを継続的に収集し、これらを繰り返し行うことで課題解決ソリューションに繋げることができます。また、A/Bテストも広告業務で実施しており、学んだ内容を実践に活かしていくつもりです。

データ・アナリティクス入門

平均と中央値が紡ぐ成長ストーリー

なぜルールが必要? データを取り扱う際は、一定のルールに則り全体の目線をそろえることで、伝えたい内容が明確になります。そのため、データからメッセージや仮説を引き出す際には、適切な代表値を選択することが重要です。たとえば、平均値については、単純平均や幾何平均など計算法の違いを意識し、正確な表現を心がける必要があります。 どんな手法が有効? また、データのばらつきを示すには、関数的な手法を用いてビジュアル化する方法が効果的です。舞台の単月入場率を年間の数字に換算する場合、各月の値を単純に平均するのではなく、正確な情報を伝えるために公演数で重みづけした加重平均を用いると良いでしょう。さらに、チケット単価のばらつきにより生じる外れ値の可能性を考慮し、中央値も併せて検討することが求められます。 分析に新たな示唆は? 日々の分析においては、平均値だけに頼らず中央値の視点も取り入れることで、その乖離から新たな示唆が得られるかを考えることが大切です。数字の集計表としてまとめるだけでなく、ビジュアル化によって情報の具体性と理解しやすさを高め、平均という言葉の使い方にも注意を払う必要があります。

データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

データ・アナリティクス入門

あなたの学びも変わる仮説の魔法

仮説の全体像は? 仮説とは、ある論点に対して仮の答えを示すものであり、全体像を把握しながら考察を進めるための土台となります。ここでは、結論の仮説と問題解決の仮説という2つの視点があり、それぞれの性格や時系列に応じて中身が変わる点が特徴です。複数の仮説を立てることで、論点全体を網羅的に捉え、さまざまな角度から検討することが可能となります。 問題の原因は? 問題解決の仮説は、具体的な問題の解決を推進するための仮説です。まず、現状を整理し、解決すべき問題が何か(What)を明確にします。次に、その問題の所在(Where)がどこにあるのかを特定し、さらに原因追及(Why)によりなぜその問題が発生しているのかを分析します。最後に対策としてどのように対応すべきか(How)を検討することで、実効性のある解決策を提示できるようになります。 論点整理はどうする? 日常の業務においては、まず現状を正しく把握し、解決すべき論点を洗い出す必要があります。洗い出した各論点に対し、上記のWhat、Where、Why、Howの順に論理的に仮説を整理すると、より具体的で実践的な解決策を構築しやすくなります。

アカウンティング入門

収益構造から読み解く経営戦略

収益構造はどう影響する? 学んだ内容の中で印象的だったのは、事業活動の収益構造が企業のコンセプトに大きく影響されるという点です。自社がどのようなコンセプトで事業を展開し、収益を上げていくのかを最初に明確にしておくことが重要であると感じました。そうしなければ、場当たり的な対応になったり、顧客のニーズを捉えられない、あるいは伝わらなかったりするリスクがあるからです。さらに、PLから読み取れる収益構造を基に、企業の特徴や課題について仮説を立て、検証する方法も学びました。 部署間比較で何が見える? この知識を活かし、まずは自部署の事業収益構造と、競合他社との比較から自社の強みや弱みを分析し、課題解決につなげたいと考えています。また、月次の採算会議や各会議で、自部署の課題や対策を検討する際にも、この学びを実践的に活用しています。さらに、自部署のPL(管理会計ベース)と他部署のPLを比較することで、各部署の特徴や利益の出し方にも注目するようになりました。今後は、競合他社のPL(財務会計ベース)も確認しながら、自社に不足している活動を明らかにし、経営層へ具体的な提言を行っていきたいと思います。

データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

「分析 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right