データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

クリティカルシンキング入門

データから読み解く顧客満足度の秘密

数字の分析で気をつけるべき点は? 数字を使用して分析する際には、与えられた数字をただ羅列するのではなく、状況に応じて自分で欄を増やしたり工夫をすることが求められます。どのような傾向があるかを分解する際には、仮説を立てるために意味のある分け方をすることが重要です。その際には、情報が漏れたり重複したりしないように注意が必要です。また、ひとつの傾向が見えたとしても、2つ目、3つ目の異なる傾向が存在しないか考えることが大切です。 商談の不満点はどこに? お客様との商談において、どの部分に不満を抱いているのかを分析することに挑戦したいと思います。例えば、お客様に会う前の段階なのか、会った時なのか、などの具体的な場面を考えます。不満の傾向が明らかになった場合、法人であれば業種や従業員数、個人であれば家族構成や年齢など、さらに詳細に検討して仮説を立て、それを実践に移してみたいと考えています。 顧客分析はどう進める? まず、これまでにご契約いただいたお客様や断られたお客様がどのような方であるのかを表にまとめます。そして、ご契約いただいたお客様にはどのような共通の傾向があるのか、断られたお客様にはどのような特徴があるのかを分析してみるつもりです。

デザイン思考入門

顧客の声とデータが描く未来

顧客視点はどうですか? 自社サービスの継続利用のための課題設定に際して、定性分析の手法を用いることにしました。顧客からの意見とともに、顧客接点に立つ営業部門からの声も取り入れ、複数の視点から情報を収集しています。また、暗黙知にも着目し、背景にある顧客倫理や潜在的ニーズを明らかにすることを重視しました。 迅速な設定はどう? 当初、一から定性データを収集する案も検討しましたが、社内で声がけを行ったところ、既存のインタビューやアンケートが意外にも多く集まりました。今回、迅速に課題設定を進める必要があったため、既存の定性分析結果に加え、定量分析や営業組織からのヒアリング結果をもとに課題設定を行う予定です。 分析手法は信頼できる? 定性分析は、質そのものに着目して行うコーディング手法など、すでに学術的に信頼されている手法がいくつか存在します。これらの分析から導かれたデータをロジックやプロセスに基づいて構造化することで、仮説を見出すことが可能です。一方、定量分析は仮説を磨き上げることが目的ですが、定性分析は新たな仮説の発見を主眼としています。ユーザーが抱える課題を的確に特定するためには、具体的な視点からのアプローチが不可欠です。

デザイン思考入門

本音に迫る新人研修の裏側

研修の成果はどこで感じる? 新人研修企画に向け、複数の社員に対してオープンエンドな質問を行い、今年1年の振り返りや研修会に対する印象など、豊富な定性的情報を引き出すことができました。中には「正直覚えていない」「配属されてからでないと分からない」といった回答もあり、知識のインプットは十分ながら実体験が伴わないため、研修がその場限りになっているという共通の課題が浮かび上がりました。 調査の難しさは何だろう? 一方、調査自体はまだ始まったばかりですが、対象者自身が気づかないような暗黙知にまで踏み込むのは非常に難しいと感じました。自身の仮説を提示し、それに対する意見は得られるものの、一歩踏み込んで本音の課題を引き出すためには、相手の領域やコミュニティに深く入り込む必要があると実感しました。 定性分析の説得力はどうする? また、定性分析はどうしても恣意的なまとめ方になりがちで、説得力に欠けるという懸念がありました。これに対して、定量分析で明らかになった結果は一般的すぎる面があるため、数値以外の情報を加えた上で、定性的な情報の根拠として定量データを補完的に用いることで、より説得力の高い分析が実現できるのではないかと考えるようになりました。

データ・アナリティクス入門

分析比較で成果を最大化する技術

分析の重要性とステップは? 分析は、比較から始まります。まずは目的に沿って、正確な比較対象を絞り込むことが第一ステップです。条件が異なる比較は、結果に意味を持たせられず、有用ではない結論に至ってしまいます。そのため、それぞれの分析の目的を見失わず、仮説に基づいて対象を絞り込み、比較していくことが重要です。 具体的な分析方法は? 具体的な分析としては、対象顧客の業界、販売結果、各営業メンバーの実績評価、営業拠点の比較、マーケット状況の分析、海外も含めた需要分析とそれに応じたサプライチェーンの構築、さらに競合他社との強み・弱みの比較分析が挙げられます。 効果的な分析サイクルとは? 分析を進めるためには、以下のサイクルを回すことが必要です。まず、比較に用いるデータを収集し、次に目的に合わせた比較指標を決定します。そして、その指標に基づいてデータを整理し、比較を行います。最後に、分析に基づいて結論を導きます。 このサイクルを繰り返しながら、改善策や対策を検討し、実行します。その後、再度分析して変化を確認し、次のアクションを決定していくことが重要です。この一連のプロセスを繰り返すことで、効果的な分析と持続的な改善が可能になります。

データ・アナリティクス入門

平均だけじゃないデータの魅力

数字加工のコツは? データ分析のアプローチにおいて、「数字を加工するためのポイント」を学びました。これまで単純平均だけに頼っていた自分に対し、加重平均、幾何平均、中央値など、分析の目的に応じた代表値の捉え方があることを知り、大きな気づきとなりました。 散らばりの見方は? また、標準偏差によりデータの散らばりを見る方法についても、漠然としたイメージから、基本的な考え方や2SDルールの説明を受けることで、より明確に理解できるようになりました。 顧客単価の確認は? 現在、一定の条件下で顧客単価を分析しており、単純平均以外の視点やバラつきの観点からの分析に着目し、これまで手つかずだった部分の解明に取り組む予定です。その際、前回学んだ分析の目的を明確にし、仮説を立てながら検証する手法を実践したいと考えています。 実践方法はどう? 具体的には、以下の点を意識して進めます。まず、初回の学びに沿った手順を振り返りながら、地道に分析に取り組むこと。次に、仮説を立てる際には、数字をざっくりとビジュアル化して全体像を把握すること。そして、代表値や散らばりに焦点を当てた分析を行い、見やすく伝わりやすいグラフなどのビジュアル化にも努めます。

クリティカルシンキング入門

MECE実践!仮説検証で切り拓く発見

データ分析の意義は? データを分析する際には、元のデータをさらに加工できないかを常に考えながら進めることが大切だと実感しました。また、分析が進むにつれて様々な仮説が立てられるため、その仮説をどのように検証するかを考えるプロセスも重要だと感じています。 検証で何を得た? 仮説と検証を繰り返すことで、新たなインサイトを発見できることが分かりました。 MECEの活かし方は? また、データを分けるときには、MECEの考え方を取り入れることで、効率的なデータの分解と分析が可能になると学びました。今日からは、「モレなくダブりなく」の精神を意識したデータの分け方を実践していこうと思います。 報告で工夫する? 社内の業務データをまとめて報告する機会があった際には、これまでのフォーマットに従った報告だけでなく、自分から先んじてデータを加工し、新たな気づきを得る試みを行いたいと考えています。 全体像の捉え方は? 今後は、業務データを扱う際に、全体像を意識しながらMECEの視点を取り入れて課題に取り組むとともに、単一の切り口にとどまらず、層別の変数やプロセスごとに異なる切り口で全体を見渡す意識を持って取り組むようにしていきます。

データ・アナリティクス入門

データから見る解決のヒント

問題解決ってどうする? 問題解決の手順を踏む中で、まずは「what(問題の明確化)」「where(問題箇所の特定)」「why(原因の分析)」「how(解決策の立案)」のステップを順に進めることが重要だと再認識しました。原因の仮説を立てるためにはデータ収集が不可欠で、仮説は単に立てるだけでなく、フレームワークを活用して幅広い視点から検討することで有用性が広がると感じました。その際、決め打ちせずにまずは自由に思考を発散させることも大切です。 数字から見える真実は? また、現時点では具体的な数字は得られていないものの、例えば事務処理に関しては実際の受付件数、処理件数、処理できなかった件数、人員数などのデータをまず取得し、そこから何が見えてくるかを仮説として立ててみたいと考えています。ただ「件数が増えているから忙しい、人手不足が原因だ」という決め付けに陥らず、複数の視点で状況を検討する必要性を感じています。 具体的な例には触れませんが、まずは上記のデータを確実に収集することが先決です。その上で、今回の問題解決のステップに沿って、場合によってはフレームワークの活用も検討しつつ、少なくとも複数の仮説を提示できるようにしたいと思います。

データ・アナリティクス入門

仮説から未来を拓く学び

なぜ仮説は大切? 「良い仮説」という言葉が非常に印象に残りました。これまで、問題が発生した際には、過去の経験や思い込みに基づいた一方的な判断に頼っていた部分があったと感じています。今後は、問題に対して複数の仮説を立て、それぞれを検証していくことが大切であると考えています。 売上課題の原因は? 私の担当している製品販売では、代理店を通じた受注や売上に関する問題が頻繁に生じます。こうした課題に対しては、さまざまな仮説を立て、検証を進めることで問題解決を図る必要があります。特に、施策と受注売上の関係性を十分に考慮して対応することが重要だと思います。 セミナーの現状は? まずは、施策に関する問題点を整理することから始めます。長年、定期的にセミナーなどを実施してきましたが、必ずしも思うような成果に結びついていない現状があります。今後は、まず顧客のニーズを正確に把握し、現行のセミナー内容が実際に顧客の要望に合致しているのか、改めて検証する必要があると考えます。 3C分析で状況は? そして、まずは3C分析を通じて状況を明確に把握した上で、複数の仮説を立て、順次検証を行っていくことで、今後の改善策を模索していきたいと思います。

データ・アナリティクス入門

分析で見える!自分の可能性を探る旅

分析目的をどう定める? まず、分析を行うためには、その目的を明確にすることが大切です。分析の核心は、物事を比較することにあります。適切な比較対象を選ぶ際には、「apple to apple」を意識し、時には目に見えないデータとも比較することが求められます。仮説を立てた上で、分析を進めることが重要です。また、分析結果を可視化する際には、その目的を常に念頭に置くことが求められます。 新しい業務の分析に必要な視点は? 新しい業務に取り組む際には、市場規模や競合他社、収支計画など、多岐にわたるデータを使用し、取り組む価値があるかどうかを分析します。コンサルティングなどの導入時においては、従来の定性的な説明に加え、コスト、業務効率化、収益への影響についてデータに基づく分析を行い、より説得力のある説明が求められます。 仕事の本質をどう理解する? 次に、「自分が何をしたいのか」を明確にし、自身の仕事の本質を正確に理解します。その上で、なぜ分析が必要であるのかを整理します。分析を始める前に仮説を立て、その仮説を検証するために必要なデータを収集します。最終的には、分析結果を適切に可視化し、周囲を納得させられるようにすることが重要です。

戦略思考入門

意思決定の成功法則を究める旅

なぜ現状を分析する? 意思決定において、どの提案が適切かを判断するためには、単に「どのように」進めるかではなく、しっかりと現状を分析し、要因と提案との整合性を意識することが重要です。考え抜かれた提案であれば、たとえ失敗しても次に活かせる経験となります。しかし、分析が不十分なまま失敗すると、その失敗自体が他の要因となり、同じ過ちを繰り返す恐れがあります。 どう提案を裏付ける? 提案は単なる仮説で行うのではなく、まずは現状をしっかりと分析することが求められます。提案は理由によってしっかりと裏付けられ、5W1Hを意識した具体的なものであるべきです。フレームワークの使用は時に面倒に感じられることもありますが、その効果性が高いため、必要な場面では妥協せずに活用していきましょう。 どう柔軟に対応する? 提案や資料作成においては、意思決定者の視点を意識しながら、想定外の事態が起こった場合でも柔軟に対応することが求められます。初めから完璧を目指すのではなく、限られたリソースの中で妥協せず効率的に進めるよう努めます。高次元での妥協を意識しつつ、人の意見を取り入れ、集合知としての折衷案を生み出すことを心掛けることが大切です。

クリティカルシンキング入門

データ分析で見つけた新たな視点

データ加工とMECEは? データの加工や分け方、そしてフレームワークについて学びました。提示された情報をただ受け入れるのではなく、その背後に隠された情報を見抜く重要性を認識しました。特にMECEの活用方法について考える機会がありましたが、必ずしもMECEにこだわる必要があるのかという疑問も感じました。MECEが手段であり目的でないことを意識することが大切です。 戦略調査の目的は? マーケティング戦略の策定では、現在のサイトへの流入経路や登録経路を様々な角度から調査しました。特に、業歴が長い会社の場合、リピーター率が高いのではないかという仮説を立てて調査し、既存顧客からのフィードバックにどのような特徴があるのかも分析しました。また、成果を上げた新人の要素を細分化して理解を深めました。 連携の秘訣を探る? 最初に関係各所と連携して分析プロジェクトを立ち上げました。プロジェクトに興味や共感を持った人々から順に説明の時間を頂いてミーティングを行い、データ分析によってどのような示唆が得られるかについて話し合いました。その過程でスモールウィンを設定し、うまくいった内容を共有してより多くの人々を巻き込んで進展を図りました。

「分析 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right