データ・アナリティクス入門

仮説で切り拓く成長の道しるべ

ゴール設定はどう? 分析のゴール設定を常に意識し、単にデータ分析が目的化しないように気をつけます。仮説を立て、比較を通じてゴールにたどり着くプロセスを重視し、適切なデータの平均などの指標を選んでいく必要性を感じています。また、比較箇所以外の条件を統一しながら原因箇所を明確に捉えることも大切だと考えています。 複雑データはどう扱う? 人事業務では、多様な角度からのデータが関わるため、分析が目的となって袋小路に入ることが多かったと振り返ります。さまざまな要素が複雑に絡み合って事象が発生している点を念頭に置きつつ、常に分析のゴールを設定しそのゴールに向かって捉え続けること、そして仮説を立てる力を養うことを今後の課題にしたいと思います。 低評価の理由は? まずはエンゲージメント向上を目的とした取り組みから始め、低い評価要素の抽出や、それぞれの項目に対して低評価の理由について仮説を立てながら分析を進めていきたいと考えています。さらに、数値の高い部署と低い部署を比較することで、より具体的かつ実践的な分析を行う方針です。

アカウンティング入門

企業体質を見抜くバランシート解析の旅

バランシートから何が見える? バランシートを学ぶことで、企業のお金の使い方や集め方についての全体像を理解できるようになります。各勘定項目を完全に理解する必要はありませんが、各ブロックのバランスを見て負債が多すぎないか、倒産のリスクがないかを推測することが可能です。 自社分析はどう進める? まず、自社や担当する取引先のバランシートを確認し、企業の体質の差を分析してみます。次に、事業内容や規模から資産内容について仮説を立て、固定資産が多いのか、流動資産が多いのかを考えます。負債の割合が多い場合、その背景や理由を事業内容と照らし合わせて予想します。 仮説立ては何のため? この研修の目的は、自社や取引先の事業体質や課題を理解することです。自ら仮説を立てて答え合わせを行う作業を中心に進めます。バランシートを読み解き、各取引先の特徴を把握します。また、取引先の事業内容を詳しく調べ、バランシートの分析結果と照らし合わせます。そして、取引先と面談する際には、仮説について可能な範囲でヒアリングし、答え合わせをして認識を修正します。

データ・アナリティクス入門

比較と分析で拓く学びの未来

目的は明確ですか? 分析を始めるにあたって、まず目的と最終ゴールを明確に設定することが重要です。これにより、次に行う比較対象の設定や分析手法の習得がスムーズに進み、上席が判断しやすい情報を提供できるようになります。 比較で何が分かる? 分析の本質は比較にあり、対象を明確にすることが成功の鍵となります。現状では、課題に対する意識はあるものの、十分な分析ができていなかったり、仮説はあるものの分析に着手する時間が取れないという状況が見受けられます。しかし、単に課題を解決するのではなく、事業全体の改善を目指し、情報公開や信頼獲得、認知拡大、ブランディングへとつながる流れを作ることが求められています。 分析の仕組みは? そのため、まずは言語化や情報整理、データ収集と集約を丁寧に行い、その上で効果的な分析を実施する仕組みを確立する必要があります。私のミッションは、組織内の情報を安全に集約・整理し、課題や仮説を明確にした上で、比較対象となる市場の情報と合わせた総合的な分析を行い、意思決定のために適切な報告体制を整えることです。

データ・アナリティクス入門

論理的思考で業務の質を向上する方法

感覚から論理へと転換 分析に関連する数字やデータの意味付けについては、これまで感覚的に対応していました。しかし、今回の講義を通じて、論理的に整理する方法を学び、新鮮な驚きを感じました。また、過去にもウェブセミナーに参加したことはありますが、今回の講師の作る良好な雰囲気により、グループ内でも発言しやすく、今後のグループワークにも積極的に参加できそうでありがたかったです。 分析の目的を意識する 普段から財務データを扱い、日々分析に取り組んでいますが、「この分析の趣旨や目的は何か」という視点を常に意識しながら業務を遂行しようと考え直しました。また、分析に時間をかけすぎないよう心掛け、分析を基に仮説を立て、次の行動へと移行し、新しいデータの取得を目指したいと思います。 学びをどう業務に活かす? これらの学びや気づきを、私自身の業務に留めず、部下や後輩の指導にも活かしていきたいと考えています。分析に限らず、業務を指示する際には、その業務の趣旨や目的、共に目指すゴールを確認することで、業務の質とスピードを向上させたいです。

データ・アナリティクス入門

売上低下の真因を明らかにする分析術

総復習で得た新たな視点とは? 今までの講義の総復習だったので、各パーツで学んだ内容を一連の流れとして把握できました。仮説、網羅的思考、目的の設定、見せ方、分解など、分析の知識と新たな思考法を学ぶことができました。また、結果をイメージした分析の重要性も体感することができました。 なぜ売上が思わしくないのか? 現在、売上が思わしくないため、きちんと目的を持った分析、原因の追究、仮説・検証の繰り返し、そして網羅的な思考を意識して業務に取り組みたいと考えています。さらに、定性的な言葉と定量的なデータを組み合わせることで、説得力のある提案ができるようにしたいです。 今後の施策にどう活かす? 売上が上がらなかった理由については、いくつかの仮説があります。まずはこれを基準に分析を行い、それに加えて網羅的な仮説も追加して多角的な分析と提案を実施していきます。原因の追究を行い、今後の施策に活かすことが重要です。また、数値がなくても、今回学んだ思考は応用可能な部分があると思うので、売上の改善に役立てていきたいと考えています。

クリティカルシンキング入門

データ分析で実感した新たな視点の必要性

刻み幅の切り方はどう? データの傾向を把握するためには、「刻み幅の調整」が重要です。刻み幅によって、データの分布がどのように見えるかが変わるため、機械的な方法ではなく、どのように切ることで特徴が見えやすくなるかを仮説を立てて試みることが大切です。また、手元にある情報だけで判断すると視点が偏りがちなので、目的意識を持つデータ取得も必要です。 アンケート設計はどう進める? 今後、アンケート調査などを設計する際には、データの切り分け方を検討する際に役立てたいと思います。課題や事象の分析では、解釈の羅列ではなく、観点となる切り口を意識して情報を分解し構造化することが有効です。A for not Aの発想も活用できます。 定性情報はどう扱う? 業務においては、定性情報の示唆を分析する局面が多くあります。具体的には、プロジェクトのボトルネックの特定や、意思決定に影響を及ぼす要素の分析において役立てたいと考えています。ただし、定性情報を分解する際には、MECE的発想が必要かどうかを見極めたうえで活用することが重要となります。

アカウンティング入門

PL分析で未来を見据える方法

PL理解の重要性とは? PL(損益計算書)を理解するには、大まかな数字で概要を把握することが重要です。分析する際には、傾向の変化や相違点に注目し、それをもとに仮説を立てて検証することが学びとなりました。また、提供する価値によってPLに現れる内容が異なるため、これがどのような影響を及ぼすか、イメージを膨らませて検証することが大切だと感じました。 毎月の損益報告をどう確認する? 毎月の会社の損益報告を見る際には、まず数字から傾向を大まかに把握することを心掛けようと思います。その後、傾向に変化があるか、大きな相違点があるかを確認します。そして、もし相違点があれば、どのような事象がそれを引き起こしているのかを検証し、再発防止策を考えられるようになりたいと思います。 部門のPL分析に注力するには? また、自分の部門の損益計算書を毎月確認し、傾向や変化を分析することにも注力したいです。損益の悪化要因を詳細に分析し、傾向が見られれば、改善策を検討します。そして、それを部下と共有し、今後の利益計画に反映させたいと思っています。

クリティカルシンキング入門

企画力を磨くための新たな視点

数字に頼りすぎずに 企画書の作成において、アンケート結果や数字に頼りすぎていたことに気づきました。「実際はどうなのか?」「前提は何か?」といった深い考察が不足していたように思います。今後は、企画の内容についてもう一度自分自身でしっかりとチェックし、思い込みを排除したいと考えています。 アンケート結果はどう扱う? アンケートを実施する際には、まず前提や仮説を明確に立てた上で進めることを心掛けるべきだと感じています。また、得られた結果を単なる事実として受け止めるのではなく、お客さまの属性や背景をさらに深掘りして理解することが重要だと考えています。 日常の実践でどう活かす? 企画の必要性を理解しても、すぐに業務に生かすことは難しいと感じることがあります。そこで、普段から他人に何かを伝える場面などで、細かい部分での実践を重ねていきたいと思います。そして、自分の思考の偏りを分析することにより、より客観的な視点を持つことを目指します。加えて、ロジックツリーを活用し、問題同士のつながりを意識する訓練もしたいと考えています。

データ・アナリティクス入門

データ分析でチーム力: 組織全体を強化する方法

仮説検証の重要性とは? 目的に基づいて仮説を立て、データを収集し、その仮説を検証するサイクル(プロセス)に視点とアプローチを加え、データを読み解くこと。その際、代表値を用いる場合、判断方法には多くの選択肢があり、散らばりも含め、目的やデータ自体に合わせて使い分けることが重要です。また、平均は外れ値に弱いことを忘れず、必要な対処を行うことが大切です。 成績把握のポイントは? 日次や月次ごとの担当者間の成績や能力を把握・分析する際には、課内メンバー間の横比較や個人の推移を確認します。その際、外れ値に注意しながら平均値を用いるのは有効です。これにより、適切な組織の人材配置や各担当者の対応許容量の検証・分析が可能となります。 組織全体の課題解決方法は? 担当者間の成績を日次や月次ごとに分析することで、横比較や個人の進捗を把握し、組織全体の課題解決の促進に向けて適切な手を打つタイミングや個人の対応許容量をデータで分析します。適切に個々の許容量を管理することで、弱点の強化策や適材適所の人材配置の判断材料として活用します。

クリティカルシンキング入門

データ分析で見えた成功と失敗の違い

真因分析の切り口とは? 真因を分析するためには、複数の切り口で分析する必要があります。切り口は、仮説を検証するために適した分け方であるかを事前に確認し、単純に分けるのではなく、目的を明確に設定しなければなりません。仮に仮説が立証できなくても、それは失敗ではなく、仮説が間違っていたことを発見できたと前向きに考えるべきです。 業務の違いはどこに? 私は日常業務で、結果が出ている取引先と結果が出ていない取引先の違いを分析しています。これまでとは異なる切り口を増やして分析を行いたいと考えています。例えば、店主の年齢、社員数、業務品質の良し悪し、取引高の規模といった要素で分析すると、効率的な行動や指導方法に繋がるかもしれません。 効率的な行動を導く分析手法は? 直近のデータを元に、自走化のレベル分け、販売率、顧客数の規模別に分析し、更に年齢、会社人数、業務品質別に分けて分析を行いました。結果が出ていない層に対しては、一定期間共通の働きかけを実施し、その変化を分析することで、次回の検証に繋げていきたいと考えています。

データ・アナリティクス入門

反論と仮説で広がる新視点

今週の経験に学ぶ? 私は人事部でDXに取り組み、最近はデータ分析を担当しています。今週も経営層からのご指摘があり、改めて反省する機会となりました。レポートの流れに特殊な点がある中で、社会人としての危機感を常に感じながら業務に取り組んでいます。 仮説の意義を考える? 指示内容は、様々な切り口で他社の人事データと比較することと、仮説を複数立てることでした。当初はどちらかに偏り、特に仮説に引っ張られすぎて決め打ちしてしまったため、網羅性が欠けた点がありました。しかし、教材のWEEK04を学ぶ中で、両方の重要性に気づくことができました。 具体策は何だろう? 具体的には、次の3点を意識することにしました。まず、決め打ちによる思考の狭まりを防ぐために、自分自身で反論や反証を考える習慣をつけます。次に、同じプロジェクトのメンバーにも仮説を立てる意義や、仮説作成のポイントを共有し、ディスカッションの時間を確保するようにします。そして、日常生活の中でもフレームワーク(3Cや4P)を意識して活用し、視野が広がるよう努めます。

データ・アナリティクス入門

仮説実証で未来を切り拓く

どうやって目的を決める? 目的や目標を明確に定めた上で、必要な判断を下すための着眼点を学ぶことができました。事象におけるステップや因果関係を意識し、まずは分析の仮説を立て、その後実際のデータ解析を通じて検証しながら、問題を絞り込む手法が有効であると理解しました。 どう検証すれば確実? 問題解決型の業務においては、事前に予想される因果関係を各種ツールを用いて整理し、データで検証することで、より正確な判断を短時間で行うことが可能だと感じています。一方、課題創造型の業務では、目的と背景を基にツールなどを活用して仮説を組み立て、実践と検証を繰り返すことで、より良い業務実施につなげる方法があると考えます。 どう計画を固める? 改めて、まずはしっかりと目的と目標を決めることが重要だと感じました。関係者を巻き込み、十分な時間をかけて納得のいくプランを作り上げ、その上で複数の仮説を立てる必要があります。また、各種分析手法を実践する中で自分のスキルと経験を徐々に深め、より多角的な判断ができるようになりたいと考えています。

「分析 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right