戦略思考入門

規模の経済性を超えて、真の競争力を手に入れる方法

戦略的行動をどう実現する? 戦略的な行動をとるためには、古くから存在しビジネスの定石とされる様々な法則やフレームワークを知り、それらの原理や前提条件、例外パターンを含めた本質をきちんと理解し、適切に用いることが必須であるということを学びました。 ビジネスの定石を再確認 WEEK5で取り上げられた「事業経済性」というメカニズムを例に、自らを振り返ると、規模の経済性がそもそも効かない場合や、効くとしても非常に限定的であることに気づきました。そのため、ターゲットを絞りサービスの価値を高めることでネットワークの経済性を活かし、そこで浮いた経営資源を集中投下して経験曲線を活かす。このように、範囲の経済性へつなげることでコスト低減が実現できそうだと感じました。しかし、これまで私はビジネスの定石を「感覚的」に理解していただけだったことに気づきました。 中期経営計画の重要性 変化の激しい時代と業界において、中期経営計画を立てる意味と重要性を再認識しています。次期中期事業計画の策定に向けて、ビジネスの定石を本質的に理解・整理し直し、一年近くの時間を有効に活用したいと思います。 視座と視野を意識した仮説思考 周囲の協力を得ながら、「高い視座と広い視野」「一貫性と整合性」を意識しつつ、不確実な情報の中でもハイサイクルで仮説検証を行う仮説思考でビジネスの定石を適用します。また、実際に適用した結果について関係者と共有し、複数の視点を基に明確な判断基準を持って投資対効果を意識し、比較検討・取捨選択を行っていきます。 事業計画策定の精査ポイント 事業計画の策定にあたり、次のポイントを精査します: - 目指すべきゴールは何か - 現経営資源に何があるのか - 省エネはどこまで追求するのか - ゴールに到達するために「やるべきこと」「やらないこと」は何か - ターゲット顧客は誰か - 自社はターゲット顧客にどのような価値を提供するか - それは本当に顧客が求めているものか - 独自性(強み、差別化ポイント)は何か - 独自性で本当に差別化できているか - 独自性は実現可能か、長期的に競争優位性を持続可能か - 事業経済性で効くものは何か、なぜ効くのか - 他社事例で適用できるものはないか 定石を駆使した事業計画 今回の講座を通じて、3C分析、SWOT分析、バリューチェーン分析、PEST分析、5Forces分析、ポーターの基本戦略、シナリオ・プランニング、VRIO分析、ジョン・コッターの8段階のプロセス、事業経済性など、10個以上の定石を学びました。事業計画を策定するにあたっては、これらの定石を意識しながら一つずつ理解し直し、他社事例を集めて研究しながら適用を進めていきたいと思います。

データ・アナリティクス入門

仮説で読み解くデータの裏側

仮説の意義は? 今週の学習では、どんな状況においても仮説を立てることの重要性を再認識しました。仮説はデータ分析や問題解決の道しるべとなり、何を調べ、どんな情報を収集すべきかを明確に示してくれます。また、代表値だけでデータの全体像を把握するのではなく、その背後にあるばらつきにも目を向ける必要があることを学びました。平均値は全体を簡潔に表す指標ではありますが、ばらつきを加味することでデータの実情をより深く理解できるという点が印象的でした。 データ把握はどう? データの分布を視覚的に把握するためにはグラフを活用することが有効です。ヒストグラムを用いれば分布の様子が、散布図を用いれば2つのデータ間の関係性が直感的に読み取れます。また、標準偏差を理解し算出することで、データのばらつきを定量的に捉え、より正確な分析が可能になるという点も学びました。これらの学びは、特に患者の受診動向分析の現場で大いに役立つと感じています。 具体計画は? 具体的な行動計画としては、以下のステップを実施する予定です。 1. データ収集と整理  ・受診データの抽出:電子カルテシステムから必要な情報を取り出す。  ・データクリーニング:欠損値や誤りがないか確認する。  ・データ加工:分析しやすい形に整える。 2. 仮説構築と検証  ・仮説リストを作成:過去のデータや経験を踏まえ、受診動向に関する仮説を立てる。  ・データ分析:収集データを基に仮説の正否を検証する。 3. 代表値の吟味  ・複数の代表値の算出:単純な受診者数だけでなく、年齢層別、性別、居住地別に平均値や中央値、最頻値などを計算する。  ・代表値の比較:異なる代表値を比較し、データの傾向を把握する。 4. 可視化  ・グラフ作成:受診者数の推移やデータ分布をグラフで表現する。  ・グラフ分析:作成した図表から季節変動やパターンを読み解く。 5. 標準偏差の活用  ・各診療科ごとに受診者数のばらつきを標準偏差で算出する。  ・科ごとの差異を比較し、正確な分析に役立てる。 6. 分析結果の活用  ・傾向の把握:得られたデータから受診動向の傾向を明確にする。  ・対策の検討:把握した傾向を元に、より良い医療サービスを提供するための対策を議論する。  ・情報共有:分析結果や検討内容を関係部署で共有する。 7. 行動の継続と改善  ・定期的な分析:定期的な受診動向の確認により、新たな傾向や変化を捉える。  ・行動計画の見直し:状況の変化に合わせ、計画を適宜更新する。 各ステップを着実に実行することで、学んだ分析手法を実務に効果的に活かしていきたいと考えています。

データ・アナリティクス入門

データ分析を活用して目標達成!

振り返るべき分析の本質とは? ライブ授業を通して、以下の3点について再確認できました: 1. 分析の本質は比較である。 2. 問題解決の4つのステップ(What-Where-Why-How)全てにおいて仮説思考が重要である。 3. やみくもに注意! データ分析における重要ポイント データ分析において覚えておきたいポイントは以下の通りです: まず、何のために分析するのかという「目的(問い)」を押さえ、その問いに対して「仮説(ストーリー)」を立て、その上で「データ収集」をし、分析を通して「仮説検証」を行うことが重要です。データ収集方法は既存のものを「リサーチ」、新たに必要なデータは「見る」「聞く」「行う」で収集します。 次に、分析の際に必要な視点として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」があり、アプローチ方法として「グラフ」「数字」「数式」があります。 さらに、比較の前提となる"複数"と"網羅性"を担保するためにフレームワークを利用することが有効です。 長期的な目標設定の方法は? 以上を踏まえ、データ分析をハイサイクルで繰り返すことで、客観性と納得性が高い本質的な課題解決や新しい目標設定が可能となることが分かりました。 また、GAiLを通して「ありたい姿(現時点での目指す方向)」をあらためて描くことで、自分の目標が職場だけでなく、公私に共通するものであると気づきました。ありたい姿を実現するには、「ゴールを設定する」「やることとやらないことを決める」「整合を取る」ところでデータ分析を活用したいと思います。そして、公私において必要となるコンセプチュアル・スキルとヒューマン・スキルの一つであるコーチング力に注力し、ビジネス・フレームワークを身に付けていくことで、中期事業計画の策定で高度な専門性を持つことを目指します。 即断即決の精度を上げるには? 中期事業計画の策定に向けて関係者と共に戦略を自らのものとして進めるために、ビジネスの定石・フレームワークを活かしつつ客観性と納得性を担保し、最後にはこれまで培った集合知を総動員した発想の飛躍に挑戦したいと思います。 経験と勘による即断即決が多くなっていることに気づきますが、それに頼らずビジネス・フレームワークとコンセプチュアル・スキルを用いて自ら検証することの重要性も感じています。即断即決する前に深く考える時間を持ち、その考えをメモに書き出してデータ分析をもとに検証する習慣をつけたいと思います。これからも即断即決が必要な場面はありますが、その精度を上げ、発想の飛躍ができるために、視座を高く持ち、視野を広くもって先輩や上司、仲間と共に高め合える関係を継続していきたいと考えています。

データ・アナリティクス入門

実践で磨くA/Bテスト活用術

フレームワークの使い方は? 今週の講義は、具体的なフレームワークや分析手法を紹介するものではなかったものの、複数の視点を取り入れて考察する過程が印象的でした。仮説の立案や必要なデータの検討にあたってフレームワークを用いた結果、回答がしやすく感じられ、今後も折に触れて活用していきたいと思います。 データ活用はどう? また、ある指導者の思考方法に沿って考えることで、データ活用の体系的な流れが見えてきました。A/Bテストについては、アンケート作成のしやすさやデータ収集の容易さから非常に便利なツールだと感じました。先週のホテル宿泊客向けの設問、たとえば「食事か部屋か」という内容は、A/Bテストに最適な例だと思います。以前に似た分析を行った経験もあり、体系的に学んだことで活用の幅が広がったと実感しました。調査対象以外の条件を統一するという基本的な考え方も、以前学んだ内容を思い出させるもので、理解しやすかったです。さらに、同じ環境や条件下でランダム化を行うことで、精度の高いデータが得られる点にはしっかりと納得できました。 PDCAで進める秘訣は? A/Bテストは実施が簡単で、所定の時間内に複数回行えるため、PDCAサイクルを迅速に回しながら正解に近づける点が魅力的です。日常生活や業務での応用については現段階では明確ではありませんが、来月から本格的に業務が始まれば、積極的に活用していきたいと考えています。日常への適用はやや難しいと感じるものの、A/Bテストに類する試みが可能であれば、試してみたいと思います。また、今週はストーリー形式で原因追及を行う講義であったため、新しい手法としてのA/Bテストを講義内容に当てはめるのは少し難しく感じましたが、今後も機会があればどんどん利用していきたいです。 小さな失敗の学びは? 次回の業務では、ぜひA/Bテストを活用してみたいと思います。ある書籍で、成功の本質は致命的でない小さな失敗を積み重ね、そこから成功のカギを見出すことだと学んだこともあり、PDCAサイクルをより迅速に回すために、この手法を取り入れていくつもりです。今週の講義内容については、統計の視点からも改めて振り返り、深く学んでみたいと考えています。先週と今週のマーケティングに関連する講義や、過去に読んだ書籍を踏まえると、再び深く学んでみたい部分もありますが、やるべきことが増えているため、優先順位をつけながら学習していくつもりです。 AIに見抜かれた理由は? なお、Q1の回答で少し手を抜いたところ、すぐにAIに気付かれてしまい、驚きました。来週は引越しのためバタバタしそうですが、グループワークの課題がなかったのはありがたかったです。

データ・アナリティクス入門

正しい思考で磨く自分の軌跡

正しい思考は何? 沢山のフレームワークが出てきましたが、本質は正しい考え方や思考方法を知り、学び、定着させることだと感じました。習得するためには継続的な取り組みが必要で、これまでノートにまとめたメモを見返しつつ、改めてここに整理してみました。 仮説をどう作る? 【仮説の構築】 まず、問題を明確にする(What)、問題箇所を特定する(Where)、原因を追求する(Why)、そして解決策を立てる(How)のプロセスを大切にしています。仮説を立てる際には、複数の可能性を網羅し、一つに決め打ちしないことを意識しています。 また、取り巻く環境を3C(Customer:市場や顧客、Competitor:競合、Company:自社)の視点で考え、自社の状況は4P(Product:製品、Price:価格、Place:場所、Promotion:販促手法)で検討することで、より具体的な分析が可能になります。 情報の取り方は? 【データ収集】 既存のデータや一般に公開されている情報、パートナーの所持するデータを確認することから始め、さらにアンケートやインタビューなどで新たに情報を集める取り組みを行っています。誰に、どのように情報を収集するか、また比較できるデータを忘れずに取る点が重要だと意識しています。 どう考えを広げる? 【仮説思考】 仮説とは、ある論点に対する一時的な答えです。結論や問題解決のための仮説を、知識を広げ多角的な視点から検討することで、説得力と行動の精度を高めることができます。思考実験や「なぜ?」を繰り返すなど、ロジックツリーを活用しながら多様な仮説を生み出し、常に発想を広げる努力が求められます。 仮説はどう検証? 【仮説の検証】 仮説と検証はセットで考え、投資額や巻き込む人数、不確実性といった観点から必要な検証レベルを見極めます。初期段階で枠組みを設定し、定量・定性のデータを収集・分析することで、より客観性のある仮説の肉付けや再構築を行うようにしています。 市場をどう見る? 【マーケティング・ミックスとその他の分析手法】 製品戦略、価格、流通、プロモーションのそれぞれの側面を4Pで検証することに加え、5Aカスタマージャーニーを活用して現代の顧客行動を捉えています。また、クロス集計分析を通して、全体の傾向や特徴、特異点を把握し、次の打ち手を考えるための洞察を得ることも重視しています。 実行にどう生かす? 最終的には、これらのフレームワークや手法を日常的に活用することで、検証マインドを鍛え、チーム全体に浸透させる意識を持つことが、戦略の立案や実行に大きく寄与すると実感しました。

データ・アナリティクス入門

データ分析の失敗談から学ぶ成功法

データ分析における意思決定とは? ビジネスにおける意思決定において、データ分析は非常に重要な役割を果たします。数値を可視化することで先入観にとらわれずに合理的な判断が可能となります。また、比較の際には、条件を揃えた上での分析が重要です。目的を明確にすることで、何を明らかにしたいのかという背景を理解し、分析の効果を最大化することができます。 失敗をどう教訓に活かすか? 日々の業務ではこれらの点を意識してデータ分析を行っているつもりでしたが、振り返ってみるとできていないことも多く、過去には目的を明確にしないまま分析に臨んだ結果、時間を無駄にして失敗に終わった経験もあります。しかし、この失敗を教訓に、分析の依頼者に対して背景や目的を確認することで、効率的なデータ抽出と適切な要因分析ができ、最終的には施策の成功に貢献することができました。この経験を通じて、分析の初期段階で目的を明確にすることの重要性を再認識しました。 今後の分析に向けた意識改革 現在の分析経験はまだ少ないと感じており、依頼されたものだけでなく自ら事業の課題に対してデータ分析を行い、積極的に提案していきたいと考えています。ウェブサイトの行動履歴ログを基にした流入、離脱、コンバージョンの分析を通じて、カスタマーの動きを把握し、学んだ知識を活かす場面は増えそうです。 依頼者とのコミュニケーションの重要性 過去には依頼者とのコミュニケーション不足で目的が不明確なまま進め、失敗した経験もありました。今後は、何を明らかにするための分析なのかを明確にし、依頼者と密にコミュニケーションを図ることで認識のすり合わせを心掛けます。また、データ抽出の間違いで時間を無駄にした経験から、目的達成のために必要な情報を収集し続ける努力を欠かさないようにします。さらに、分析結果を言語化する際には、簡潔かつ構造的にまとめることを目指します。 スキルの向上と今後の展望 これからは、データ分析に必要な情報を依頼者とのコミュニケーションを通じて収集し、過去の失敗や学んだ知識を活かして、目的の明確化、仮説の設定、納期、データ抽出の定義など、依頼者とすり合わせを行い、認識の齟齬をなくすよう努めます。依頼者が求める分析の目的を見失わないように、すり合わせた内容を基にして、全体像を把握するデータ抽出から始めるつもりです。分析結果は言語化し、依頼者と密にコミュニケーションをとり、振り返りを行います。 学んだ知識をもとに行動を重ね、情報収集やデータ抽出方法のツール、プログラムの習得などのスキルを磨きつつ、事業の課題に対して正確なデータ分析レポートを提供できるよう努力を続けていきます。

データ・アナリティクス入門

問題解決スキルでデジタル広告を最適化

原因分析の重要性を知る 問題解決ステップにおける原因分析(Why)、Howの立て方について学びました。 原因を探るためのポイントは次の二つです。一つ目は、結果にいたるまでのプロセスを分解し、どのプロセスに問題があるか特定すること。二つ目は、解決策を決め打ちにせず、複数の選択肢を洗い出し、それを重みづけして評価・選択することです。 総合演習で何を学ぶ? 総合演習では、問題解決プロセス全体を経験しました。この過程を通じて、「問題が発生すると、解決策から考えてしまう」「仮説めいた持論を展開する」「それらしいデータに飛びつく」という思考のクセを極力排除し、問題解決ステップに沿って検討を進める方法を学びました。 実務での学びの応用は? 出版デジタルメディアにおけるタイアップ広告販売の仕事においても、この学びを活かせる場面がいくつかあります。 まず、タイアップ広告の進行中の検証や効果測定です。例えば、PVや再生数などの指標が当初の予測よりも悪い場合、従来はコンテンツの内容にのみ着目していましたが、今後はプロセスに分解することで、原因箇所を判断できるようになります。 次に、ABテストです。記事コンテンツは校了後に修正しないのが基本ですが、タイトルやサムネイル画像などの要素はテスト形式にすることができるかもしれません。また、SNSでUPするコンテンツでもテストが可能かもしれないと感じました。 成長戦略における問題解決 また、自社メディアの成長戦略策定においても、他部署と来期の戦略を立てている最中で、問題解決ステップを基にした議論がなく、Howばかりで決め打ちの議論になりがちです。そのため、効果検証がしづらい状況でした。そこで、自分が問題解決ステップのWhat、Where、Whyを整理し、メンバーに提案してみようと思います。納得してもらえるかはわかりませんが、WhyからHowの複数の選択肢を全員で洗い出してみたいです。 次に取るべき具体的アクションは? 具体的なアクションとしては、以下の内容を計画しています。 まず、途中検証がすぐにできるよう、プロセス分解を先に作成します。また、外部サポート企業にプロセス分解を依頼する予定です。 次に、サイトとSNSでABテストにかけると効果的な項目を洗い出し、社内に提案します。これについても、どの項目を抑えるとサイト成長の観点で効果的か外部サポート企業に確認します。 最後に、自社メディアの成長戦略策定に向けて、問題解決ステップに沿って自社サイトを分析しておくことです。これには、今週予定されているミーティングに向けてGA4を可能な限り分析することも含まれます。

クリティカルシンキング入門

MECEな思考でプロジェクト運営が効率化された実例

物事の理解を深めるには? 物事や起きている事象を正しく理解するためには、様々な切り口で分解し、特徴的な傾向を見つけ出すことが重要だと実感しました。 MECEな切り口を考える意味は? まず、切り口はできるだけ多く考えることが大切です。物事の特徴を見つけ出すためには、様々な切り口での分解が必要です。これを効率良く進めるためには、MECEな切り口を考えることが重要です。もし切り口にモレやダブりがあると、要素同士が重複してしまい、分解しても特徴をうまく捉えられません。MECEであれば要素同士が独立しており、特徴を特定しやすくなります(原因解析であればうまく原因を特定できる)。 どのような切り口が効果的? MECEな切り口には、主に3パターンあります。「層別分解」、「変数分解」、そして「プロセス分解」です。全体を定義したうえで、これらを入口に考えていくと効率良くMECEな切り口を見つけられます。 分解結果をどう活用する? また、物事に影響を与えそうな原因の仮説を持ち、どのような単位で分解すると意味がありそうか考えることも重要です。目的に沿う切り口だけを仕分けて選別します。数値から特徴を見つけるには、分解した結果をグラフによって視覚化することが有効です。視覚化することで、全体を俯瞰し傾向を見つけやすくなり、効率化にも非常に有効です。 エンジニアに必要なスキルは? 数値を分析して物事を正しく捉えるという仕事は、開発業務に従事するエンジニアとして機会があります。今回の学習を踏まえて振り返ってみると、「変数分解」というアプローチを良く取っていたように感じます。この他にも「層別分解」や「プロセス分解」といったアプローチがあることを学んだので、これらのアプローチから新しい切り口を考えるのは有効だと思います。 プロジェクト運営での活かし方は? また、数値分析というわけではありませんが、物事をMECEな切り口で分解して捉えるということ自体が、自身の仕事で役立つと感じています。今では開発業務における数値分析という仕事は減り、プロジェクト運営の仕事が増えています。プロジェクトの方針・方向性を示し運営していくことが必要とされており、MECEな切り口で物事を捉えて説明するということは有効だと考えます。 実践すべきステップは何か? プロジェクトが担当する範囲を明確にし、その中でやるべきことをさらに分解して示していく必要があるので、MECEな切り口で分解していくことを意識したいと思います。MECEの3つのアプローチを入口に、切り口を出していくことを意識して実践していこうと思います。

戦略思考入門

抽象が現実に!自己成長の軌跡

変化はどこで感じた? week1からweek6を振り返ると、自身のありたい姿がより具体的に明確になっていることに気づきました。初めは抽象的に掲げた目標が、学びと実践を重ねる中で、より具体的な行動指針へと変化していったのです。 進化の具体例は? 例えば、week1では「研修講師としてプレゼンスキルを習得する」と記していましたが、week6には「スライドを見ずに、自分の言葉で受講者の目を見て話すことを心がける」と、より具体的な表現になりました。同様に、「ストーリーを見せるリーダーになるためにわかりやすく説明するスキルが必要」との記述が、最終的には「自分の言葉で語る」という、自身の解釈を伴った表現に変化しています。 戦略の意識は? この変化は、戦略思考でいうゴールを明確に意識し、日常的に具体的な行動を自問自答する習慣が根付いたためだと思います。短期間ながら、学習記録を通じて自己成長を実感できたことが大変嬉しく感じられます。 新たな学びは何? また、講座内で初めて学んだフレームワークや基本戦略、戦略における選択(捨てる)、経済性といった概念は、今後の小さな判断や日々の意思決定にも活用できると感じています。同じく、「捨てる」学びは、優先順位を明確にするという点で、日常生活や業務に直結するものとなりました。 仕事の優先順位は? 仕事の現場では、業務の優先順位付けが適切でないと、自分だけでなく周囲にも影響を及ぼすため、タスクの期限を明確にし、必要な時間をあらかじめ設定することが大切だと感じました。さらに、予期せぬタスクに対応できる余力を持つことや、業務の優先順位が異なる場合には、部下としっかり擦り合わせることが不可欠だと思います。 運用計画の実践は? 出店後の運用や経営計画を立てる際にも、フレームワークを活用して環境や情勢を踏まえた分析を行い、将来の経営や売上の拡大に向けた仮説を立てるという実践が、とても役立つと実感しました。 管理はどう進化? 日々のスケジュール管理についても、タスクの優先順位を可視化し、常にスケジュールを見直して必要に応じた優先順位の変更を行うこと、また、ROIを意識して客観的な判断を心がけることが重要だと学びました。自分一人ではなく、周囲とも積極的に情報を共有し、スムーズな業務遂行を目指していきたいと考えています。 現状把握の秘訣は? 最後に、現状分析にはPESTやSWOTを活用し、自社の強みや弱みを正確に把握することが必要です。その上で、戦えるフィールドを明確にし、今後の戦略に繋げていく姿勢が大切だと感じています。

デザイン思考入門

会話から覗く隠れた顧客ニーズ

会話分析で隠れたニーズは? 定性分析について学んだ中で、CRMの管理者として、営業担当が顧客との面談で交わした会話内容をテキスト分析することで、隠れたニーズを発掘できるのではないかと考えました。一人ひとりの顧客に対し、営業担当自身がそのニーズに気づけるCRMシステムが理想です。しかし、そのシステムが効果を発揮するためには、まず営業担当のインタビュー能力を高め、会話内容を漏れなくテキストとして記録する仕組みが必要だと感じました。 研修でどう均てんする? インタビュー能力の均てん化は研修を通じて改善できると考え、記録については音声入力などのテクノロジーが一定の解決策を提供してくれるのではないかと思います。 セグメントの切り口は何? また、顧客のセグメンテーションは売上などの定量的な視点からだけでなく、定性分析を通じてこれまでとは異なる切り口で行える可能性があり、その各セグメントに対する最適な解決策を考えることができると感じました。このため、膨大なテキストデータのコーディング作業が非常に重要だと考え、AIの活用により効率的に対応できるのではないかと期待しています。 システム改善をどう確認する? システム導入については、すぐに実施するのは難しい状況ですが、リニューアルされた別のシステムが以前より使いやすくなったかどうかをチャットベースでのインタビューを通して確認する取り組みも行っています。ただし、単に「使いやすくなった」といった安易な回答に終始せず、具体的にどの点が改善され、どこに課題があるのかを掘り下げる質問をしていくことが重要だと考えています。たとえば、普段どのページにアクセスしているのか、そのページやデータへのアクセスが容易になったかを確認するなど、具体的な視点から質問を設定しています。 利用意義をどう問う? また、システム利用によって本来的に実現したいことに焦点を当てる必要性も感じました。問題点を問うのではなく、見たいデータへのアクセス手順が改善されたか、データがインサイトを得られるように可視化されているか、といった具体的な問いを設定するべきです。ざっくばらんに意見を募ると、後々コーディングして集約する際に混乱が生じる恐れがあります。 仮説構築の秘訣は何? 定量分析が仮説の検証を目的とするのに対し、定性分析は新たな仮説構築を目的とします。コーディングを通じてプロセスやフレームワークを構築することで、これまで想定しなかった要素も明らかになるでしょう。デザイン思考においては、仮説が広範囲になりすぎず、解決策ありきの課題設定を避けることが肝要だと感じました。

データ・アナリティクス入門

成長の瞬間:成長と仮説力の融合

振り返りで何を学んだか? Week1からWeek6までの講義や演習を振り返り、私の中では「つい決め打ちしてしまう」という考えが消え、多くの仮説を立てられるようになりました。これにより、今後の仕事における課題解決や成果につながると感じています。特に、今回のライブ授業での陶芸体験の演習では、様々な仮説や解決策が瞬時に思い浮かび、考えることに対して柔軟になったと感じました。 少しずつ成長していることを実感し、自分が勉強や学ぶことが好きだということを改めて思い出しました。 オウンドメディアでの検証方法は? 弊社のオウンドメディアにおける検証については、まずSEO数値分析やユーザー導線の見直し、SEOコラムのオーガニック増加をMECEで分類し、細かく分析しました。影響力の大きい分類だけでなく、%が少なくても重要視すべき分類もあるかもしれないので、細分化しました。6つくらいの大分類に分けてリライトの優先順位を決めました。 新規ユーザー獲得への取り組み 自社のWebサービスについても、以下のように活用しています。 1. 新規ユーザー獲得導線の増強に活用(Google広告のKWD分析など)。 2. 現在のユーザーに関しても分析し、新規獲得に活用。 まずは、自分のマーケティング、メディア制作、CS効率化などのタスクを明確化し、最終ゴールである新規会員登録増加と正しいKWと属性のユーザー獲得の仮説を検討しました。その後、スケジュールを立ててチームに共有。これにより、新たな発見や課題が出ることを期待しています。 3Cと4Pフレームワークの活用 また、オウンドメディアからの新規ユーザー獲得について、メディアの3Cの内「市場」と「競合」を4P(商品、価格、場所、プロモーション)フレームワークを活用して網羅的に検証しました。既存ユーザーに対しても同様に4Pフレームワークを活用し、ゴールまでの仮説を立てました。 Webメディア運用での問題特定法 自社Webメディアの運用では、現状の問題を特定し、What、Where、Why、Howの各要素に分けて進めました。また、A/Bテストやサイト上でのサムネイル策定、広告でのABテストに時間をかけ、効果を出していきたいと考えています。 原因をプロセス分解し、ボトルネックをきちんと把握することが課題解決の近道です。正解はないので、広く視野を持ちトライアンドエラーの精神で、複数の選択肢を視野に入れサイクルを構築。短期・長期のモデルを検討しながら結果をしっかり分析し、最大限の効果が現れるように、その見極めができるようになりたいと考えています。

クリティカルシンキング入門

データ分析で知る深掘りの楽しさ

何を学んだ? 今回特に学んだことは以下の3点です。 全体定義はなぜ? まず、問題に取り掛かる際は全体を定義することが重要です。いきなり分解や分析に入るのではなく、どのような回答となりそうかを想像し、仮説を立てることから始めます。その後、その仮説を検証するための分析方法を実施します。 MECEって何? 次に、MECE(Mutually Exclusive, Collectively Exhaustive)を意識することです。データを分析する際、漏れなくダブりがないかをチェックします。MECEが守られていない場合、分析結果が正しく事象を表していないことになり、本質を理解するためにこの考え方は重要です。 疑問で深掘りする? 最後に、結果が出ても「なぜ?本当に?」と繰り返すことです。分析結果が出た際に、それが正しく事象を表せているのか、なぜそのような結果になるのかを2~3回と深掘りして追求します。この過程で、異なる切り口での分析や、データ自体の見直しを行うことで、深い理解につながり、正しい答えにたどり着けるものと考えます。 現場で生かせる? 私は他部署で発生した事象について報告する業務が多いため、そこで学びを活用したいと思っています。たとえば、事業会社の売上実績を自部署内の会議で報告する際や、サプライチェーンの原材料調達コストの分析、新規プロジェクト立ち上げ時の計画立案などです。それぞれの場面で、様々な切り口で考え、MECEに基づいた分析を行い、結果を深掘るといったサイクルが非常に有効であると考えています。 データ報告の秘訣? 具体的な業務の中で、事業会社の毎月の売上実績を自部署内で共有する場面があります。ここでは、以下のように進めています: 定義の要点は? まず全体を定義します。事業会社から提供されるデータをもとに、いきなり売上や利益、単価の推移などを見るのではなく、何を部署内で共有するべきか、ポイントは何かを意識して仮説を立ててから分析に入ります。 分析は整ってる? 次に、MECEを意識します。その月の重点事項を決めたら、売上や利益、エリアや商品といった切り口で漏れなくダブりのない分析を進め、重点事項が正しいかどうか検証します。 結果の真意は? 最後に、結果が出ても「なぜ?本当に?」と繰り返します。もし仮説通りの検証結果が得られた場合でも、それが本当か確認します。異なる切り口からの確認も行い、事業会社から提供されたデータの数値を元に読み解くことを続けていきます。

「分析 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right