データ・アナリティクス入門

比較と検証で切り拓く未来

分析の見極めポイントは? Week1を振り返って、「分析は比較なり」という言葉が強く印象に残りました。正確な分析を行うために守るべき要点を改めて認識するとともに、仮説と検証を繰り返すことの重要さを実感しました。 業務での分析とは? 実際の業務シーンでは、以下のような場面でデータ分析の手法を活用しています。病院のデジタル推進におけるデータ分析、サーバ性能やトラブル発生時の問題解決、新サービス導入時のサーバ負荷試験に関する見解、また、LINEや無呼吸ラボ、近隣検索、PCPへのファネル分析、アクセス数やページビューの分析など、さまざまな事例に取り組んでいます。 分析習慣の秘訣は? 日々の業務においては、勘や経験則だけに頼ることなく、データ分析に基づいた意思決定を行う習慣を身につけることが重要だと感じています。問題が発生した際には、What、Where、Why、Howの視点で現状を整理し、的確な対策を講じるために、仮説と検証を繰り返す姿勢を大切にしていきたいです。

データ・アナリティクス入門

データ分析の新視点を見つけた瞬間

データ分析の重要性再確認 ライブ授業で教わった「データ分析は比較である」ということや、目的に沿った分析が重要だという点は、今までの経験から理解していたつもりでした。しかし、動画で出てきた愛の値段の計算や補強すべき部分の選択などの設問に答えることができなかったため、自分にはまだできていないことが多いと気づかされました。 比較視点をどう持つか? プロジェクトや業績の実績評価の際に、他の競合や他の例と比較して報告することができたら良いと思いました。「Apple to Apple」の比較対象を探すことは簡単ではありませんが、比較がないよりは評価や分析が深まるはずですので、挑戦したいと考えています。 比較癖をつけるための方法 結果や業績などの数字を見た際に、必ず他と比較する視点を身に付けることが重要です。何と比較して良かったのか、標準はどのくらいなのかを自分で確認するようにし、その比較対象があることでどのような見え方になるのかを考える癖を付けたいと思います。

戦略思考入門

実例で学ぶ戦略フレームワーク活用術

フレームワークの活用に自信が持てるようになった理由は? これまでも戦略について検討した経験はありましたが、微妙にずれている話をまとめるのが得意ではありませんでした。また、フレームワークについても知識としては持っていましたが、実際に使いこなすことには自信がありませんでした。この講座を通じて、フレームワークを実例として使うイメージがわき、今後の業務に活用できると考えています。 中期計画で考慮すべきポイントは? これから中期計画を立てるにあたり、考慮すべきポイントをフレームワークに沿って検討し、各項目ごとに抜け漏れがないかをチェックしながら、整合性の取れた計画づくりに取り組んでいきたいと思います。 サプライチェーンの視点をどう活かす? 地域に関連する方針を固める際には、サプライチェーンの観点も今回初めて加えてみたいと思いました。また、SWOT分析を基に改めて会社の強みを検討し、どの分野で競争優位が得られるかを論理的に検証していきたいと考えています。

データ・アナリティクス入門

実践で磨く論理的仮説力

復習会で何を学んだ? 今週は、学んだ内容を振り返る復習の会が行われました。授業内での演習では、これまで学んだ知識が実際の場面で役立つことが多く感じられましたが、フレームワークの定着が不十分なため、仮説を立てる際に無計画に仮説を出してしまうこともありました。しかし、即座にフィードバックを受けることで、その意見が定着の助けとなり、次のステップに進む良い機会となりました。 業務でどう活かす? 学んだ内容は、業務での問題解決や意思決定に大いに役立ちそうです。例えば、部門で課題が発生した場合、データ分析を用いて仮説を構築し、フレームワークで整理することで、明確な解決策を導き出しやすくなります。また、新しいツールや業務プロセスの導入時には、評価軸を設定し、客観的に比較する方法が意思決定の支援に有効です。今後は、データ分析技術やフレームワークを日常的に意識して活用し、論理的な仮説立案を習慣付けることで、業務の説得力と成果を高めていきたいと考えています。

アカウンティング入門

営業利益を深掘り!企業分析の新視点

営業利益は何がわかる? P/Lの営業利益についての理解が深まりました。特に、同様のビジネスを行いながらも異なる戦略をとる二つの事例を通じて、どのようなコストがかかるのか、そしてその実現に必要な視点について考えることができました。安易に費用を下げる戦略が危険であるという視点は大きな学びとなりました。 企業選定はどうするの? まず、提携先企業の選定にあたっては、P/Lを読むことが重要だと感じています。異なる企業の比較を通じて、各企業の強みや弱み、そして狙いを明確にし、企業分析に活用したいと考えています。 分析スピードはどう向上? また、チームメンバーとともに、企業分析業務にP/Lの知識を生かすことで、企業間比較のアウトプットスピードを向上させたいと思います。同一業界内の企業を比較することで、自らの企業分析スキルを深めていく計画です。特に、販管費がどのように使われているのか、企業ごとに異なる点を詳しく理解できるようになりたいと考えています。

データ・アナリティクス入門

分析が楽しくなる仮説の立て方と実践例

適切な比較対象を選定するには? 分析の本質は比較であり、適切な比較対象を選定することが重要だと学びました。また、問題解決には、「What, Where, Why, How」の4つのステップがあることも理解しました。今後は、ただやみくもに分析をするのではなく、当たり前ではありますが、仮説をきちんと立ててから実施することを心がけていきたいと思います。 秋の実証実験で何を活かすか? 秋から始まる実証実験の結果を、今回学んだ内容を活かして分析していきます。特にアンケート設計を実施する必要があるため、事前に仮説を立て、実証実験で得たいデータが得られるような設計にしていこうと思います。 アンケート設計の考慮点は? 9月中にはアンケート設計を行います。実証の目的や今後に繋げていくために欲しい情報などをよく考えた上で設計を行うことを心がけます。また、今回学んだ知識を忘れないためにも、業務の中で意識的に使用していくことを心がけていきたいと思います。

戦略思考入門

実務に活かすフレームワーク活用法

学んだ分析は何? 3C分析、PEST分析、SWOT分析、5フォース分析、バリューチェーンなど、多くのフレームワークを学びました。これらのフレームワークを活用する意義は、検討すべきポイントを漏れなく把握することにあります。各フレームワークは単独で成立しているわけではなく、相互に関連しています。 実務でどう活かす? これらのフレームワークは、新商品導入やDX推進といったプロジェクトで活用できそうです。どの場面でも、最初に現状を把握することが重要です。また、新しい提案を行う際の資料作成にも役立つと思います。実務でも今回学んだフレームワークを活用していきたいと考えています。 理論は活かせる? 学んだフレームワークは理論に過ぎませんが、今後のナノ単科で紹介されるであろう事例に当てはめて考えたり、実務で使いながら身につけていきたいです。事例に当てはめる練習を重ねることで、フレームワークを『使える』レベルまで高めていきたいと思います。

データ・アナリティクス入門

「分析力を鍛える成功への鍵」

分析の本質は何か? 分析とは、他者との比較に基づいたものであることが重要です。ただデータを平均や中央値で計算するだけではなく、意味のある計算を行わなければなりません。相手に課題や成果をわかりやすく伝えるためには、相手が求めている情報をしっかりと表現することが求められます。 分析の必要性をどう示す? 分析を始める際には、その必要性を相手や受講者に示すことが重要です。まず現在の状況を把握し、そのうえで必要となる目標や合格ラインとのギャップを明らかにします。これは、会社の目標や業界平均などを基準にすることができます。 成長を示すための視点は? 他者と比較した際のウィークポイントや、成長を示すような経時的な変化を提示することも大切です。自分自身の経験だけでなく、他者の成功例を活用することで、さらに多くの知識を身につけることができます。これにより、他者にとってわかりやすく、行動変容につながるデータの提示や説明が可能になると考えます。

アカウンティング入門

業界別損益計算書の秘密に迫る

損益計算の変化は? 事業のコンセプトが違うと、損益計算書の構造が変化することを学びました。特に印象に残ったのは、最後の動画で自動車業界とクラウドサービス業界の事例を見たときです。これらの業界では、売上原価率が低くても販管費率が高くなることがあり、事業構造や企業の成長段階によって一概には判断できないことが明らかでした。 費用の偏り、知りたい? 私は特に、売上原価や販売費および一般管理費のどちらに費用が偏っているのかを知りたいと考えています。そのために、各業界の状況を考慮しつつ、関連する事業構造や費用構造を仮定し、現在支援している顧客企業の分析に活かしたいと思っています。 営業戦略はどうする? 具体的には、売上原価率や営業利益率、販管費率などについて、なぜ業界よりも高いのか低いのかを想像し、顧客企業に質問してみます。そして、会社の先輩方に相談しながら、業界や職種ごとの特徴を理解し、営業や提案の際に活かせるようにしたいです。

データ・アナリティクス入門

多重仮説で読み解く医療DXの秘密

複数仮説はどう考える? 今回の学びとして、まず仮説は一つに固執せず複数考えることの重要性を実感しました。複数の仮説を検討することで、偏った視点を修正し、より確度の高い判断が可能になると理解しました。また、仮説立案の際にフレームワークを活用することで、網羅的な視点から仮説を立てることができ、さらに仮説に対する反論を排除する観点も意識するようになりました。 DX進展の理由は何? これらの学びを踏まえ、病院やクリニックのDX推進において見られる、デジタル化やソフトウェア導入の進展が遅い理由について、様々な要因を考慮しつつ、学んだ仮説検証のマインドを活かして問題解決を図りたいと考えています。そのため、まず病院やクリニックの中で特にDXが進んでいる事例を分析し、進んでいる顧客の特性や地域性を、今回学んだフレームワークの切り口(3C:市場・顧客、競合、自社、及び4P:製品、価格、場所、プロモーション)を用いて仮説を立て、分析を進める予定です。

データ・アナリティクス入門

多面的な視点で採用戦略を刷新する

多面的な思考の大切さとは? A/B評価の考え方を取り入れて、多面的な思考を心がけたいと思います。品質、コスト、納期、環境、安全の各切り口からプロセスごとに要因分析を行うだけでなく、仮設に関する健全性や生産性、環境適応性といった視点でも考える習慣を持ちたいと考えています。 データの使い分けが成功の鍵? 採用市場に関わるデータについても、定性・定量、生・加工、一次・二次といった種類を使い分けることが重要です。切り口を変えて物事を見つめることで、得られた傾向の意味や仮設の証明に役立て、それを戦略立案(例えば、人材獲得へのプロセス)に反映させたいと思います。 データで採用プロセスを進化させるには? 採用活動やプレ期活動を念頭に置き、現在の採用プロセスの課題抽出と環境変化への早期対応にデータ分析力を活用したいです。この分析を通じて、関係部門の協力を得られる方針や実行計画をブラッシュアップし、組織の財産として残したいと考えています。

クリティカルシンキング入門

視野を広げる考え方のリセット術

偏見にとらわれない切り口とは? 切り口について考える際、私はターゲットの課題を念頭に置いていましたが、偏見によって視野が狭まり、回答例で提示された着想や解答を十分に導けなかったと感じました。そこで、切り口をMECEに検討するためには、まずフラットな視点で考えることが重要だという認識を新たにしました。 課題解決のために何が重要? ユーザーが実際に価値を感じる課題解決とは何かを考えることは、相手にそれを伝える際に必要なスキルだと思います。特に、シンプルに伝える文章の重要性を今まで軽視していたことを痛感し、基礎から再考する必要があると感じました。 効果的な伝え方の工夫は? そのために、相手に伝える際には、主語(S)と述語(V)をしっかり意識し、短い文で伝えることを心がけます。そして、ユーザー思考で何が一番価値に繋がるのかを考え、MECEに要因分析を行う(5W1Hへの意識も大切です)。まずは、これらの点を徹底したいと思います。

「分析 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right