データ・アナリティクス入門

数字から紐解く現場の実情

データ分析はどう見る? 今週はデータ分析の基本的なアプローチについて学びました。データを評価する際は、まず「データの中心がどこに位置しているか」を示す代表値と、「データがどのように散らばっているか」を示す散らばりの2つの視点が大切であることを実感しました。代表値としては、単純平均のほか、重みを考慮した加重平均、推移を捉えるための幾何平均、極端な値の影響を排除する中央値などがあると理解しました。また、散らばりの具体的な指標として標準偏差を学び、データが平均からどの程度離れて散らばっているかを数値で評価できることが分かりました。 現場での活用方法は? これらの知識は、実際の現場での作業時間、コスト管理、安全管理などに役立つと感じました。例えば、複数の現場における作業時間の平均を求める際、単純平均だけでなく、現場ごとの規模に応じた重みをつけた加重平均を用いることで、より実態に即した傾向を把握できると考えます。また、標準偏差を利用することで、同じ作業工程でも現場ごとのバラつきを数値で示し、ばらつきが大きい工程には重点的な対策が必要であると判断しやすくなります。数字の羅列だけでなく、背景や偏りを理解しながらデータを多面的に捉える習慣の重要性を再認識しました。 次のステップは何? 今後は、各現場における作業時間や工程進捗、コストなどのデータを収集し、単純平均だけでなく加重平均や標準偏差も併せて算出することから始めます。特に、同じ工程内で標準偏差が大きい場合は、どの現場で大きなばらつきが見られるのかを明らかにし、その現場の状況や原因を直接確認することで、関係者と改善策を議論します。また、社内報告でも単なる平均値だけでなく、ばらつきや偏りをグラフなどで視覚的に示すことで、現場間の違いや課題を分かりやすく伝える資料作りに努めていきたいと思います。

戦略思考入門

集合知で描くSWOT活用の新視点

フレームワーク活用の理由は? フレームワークを知っているだけでは意味がありません。特にスタッフ部門では、直接的に活用できる場面は限られているように感じていました。しかし、具体的な活用ポイントや事例を学ぶことで、SWOT分析やその他のフレームワークも、読み替えや置き換えによって適用できる場面があるのではないかと考えるようになりました。 集合知はどう作用する? また、集合知の重要性も深く心に残りました。意見が食い違う場面は日常的にありますが、それを単なる困難と捉えるのではなく、多面的な認識が得られ、議論を通して考えが洗練され、抜け漏れの防止にもつながるというポジティブな側面に着目し、有難く享受していきたいです。 体制強化の再評価は? これから取り組みたいのは、現在の体制強化の進め方についてのSWOT分析を通じた再評価です。漠然と正社員を補充するだけでなく、効率と効果の両面で新たな気づきが得られるのではないかと期待しています。また、個々がプロとして働くことから、プロ集団として組織全体で取り組むというマインドチェンジも重要です。現状ではすべてをみんなでやろうとするのは難しいかもしれませんが、メンバーの負担を軽減し、集合知の重要性を訴えながら適切な雰囲気を作ることが必要だと考えています。これは長期的な課題かもしれませんが、戦略的に最短で進めることを目指します。 SWOT分析はどう機能? まずは自組織のSWOT分析を実施し、その結果を基に体制強化策の見直しを行いたいと思います。集合知を活かす組織づくりに向けては、この研修での学びや気づきを月次会議で共有することから始めたいです。また、私自身が「一緒に仕事をしたい」と思われるような人間性と振る舞いを心掛け、日々、明るく元気に取り組むことを意識していきたいです。

データ・アナリティクス入門

仮説で挑む、学びの冒険

仮説の違いは? 仮説について、まず結論の仮説の例として、ある飲料のターゲット事例が挙げられます。これはコミュニケーションで活用されるもので、いわばあるテレビ番組で語られる説に似た考え方と言えます。一方、問題解決の仮説は、現状と理想の間に生じるギャップに着目し、その具体的な発生箇所や原因、そしてどのように対処すべきかについて仮の答えを提示するものです。 目的はどう決まる? また、仮説は目的があって初めて生まれます。たとえば登山中に道に迷った場合、どの方向へ進むべきかという仮説は、生存という根源的な目的から生じます。仮説生成を駆動する目的は大きく以下の3つに分類されます。まず、課題解決型の目的は、差し迫った問題に対処するために生存を確保する意図から生まれるものです。次に、探究型の目的は、なぜある現象が起きるのかという疑問や違和感を解消したいという好奇心に基づきます。最後に、変化志向型の目的は、現状に閉塞感を感じ、新たな選択肢を模索する動機から生じるものです。これらの目的は互いに重なり合いつつも、いずれも現状に対する不全感という出発点を共有し、仮説を突破口として機能させています。 行動へのつながりは? 自分や周囲が抱く仮説やアイデアが、結論を導くものなのか問題解決のためのものなのかを意識的に分析することが大切です。また、好奇心や物事に対する違和感といった感情を大切にしながら、仮説生成の駆動力を維持する必要があります。さらに、仮説検証はあくまで手段であり、目的そのものではありません。どれだけエレガントな分析であっても、最終的にはその分析結果をもとに具体的な行動を起こすことが肝心です。行動を促すために必要最低限の分析に留め、実際のマップ、ループ、リープといったプロセスを回しながら、目的意識に基づいた行動を心掛けたいと思います。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。

データ・アナリティクス入門

データ分析の極意と失敗しない一歩

ステップを踏む重要性は? ステップを踏むことと全体像を把握することは大切です。MECE(Mutually Exclusive, Collectively Exhaustive)の視点で全体を捉え、すぐに行動するのではなく、熟慮することが重要です。現状把握、原因分析、目標設定、そして打ち手の流れを理解する中で、特に現状把握が最も重要となります。多様な切り口から複数の要因を見つけ出し、そこから原因を確定することが求められます。例えば、QCサークルのような取り組みが有効です。そして、問題解決の目的が達成されたかどうかを検証することも忘れてはいけません。 問題解決のパターンとは? 問題解決には二つのパターンが存在します。一つはあるべき姿と現状のギャップを埋めるもので、もう一つは将来的な目標を現状と比較し、その余白を埋めるものです。後者は単に正常に戻すだけではないという点がポイントです。 原因分析の力量が成功を決める? 私自身、仕事の中で問題を解決する手法を使用していますが、事故対応策の相談や質問を受ける際、絡まり合った要因を考慮しながら原因を探り、対策を講じています。問題が単純に解決できる場合もありますが、連鎖的に解決される場合もあり、対応策が多岐にわたることがあります。原因分析の力量が重要であり、そのためには切り口の選び方が解決の度合いを大きく左右すると思います。 検証不足は問題を招く? 気になる点としては、要因分析から原因把握を行う際に、十分な検証を行わずにすぐに解決策に飛びついてしまうことが多く見られます。複数の解決策を列挙し、その中から重要度が高く、効果があるものを優先して対応することが肝心です。それでも上手くいかない場合には、PDCA(Plan-Do-Check-Act)サイクルを再検討することが必要です。

戦略思考入門

思考の深さが生む経営革新

今回変更する振り返り文章 本質は本当に大切? 本質やメカニズムの重要性を理解するための課題に取り組みました。単に耳にした言葉を引用するだけでは、相手を説得することは難しいと感じました。今回の取り組みでは、規模の経済性を活かすためには、「生産量を増やす」や「原材料の発注量を増やす」といった基本的な提案だけでなく、深く考える必要があると学びました。この経験を通じて、多角的な思考の重要性を改めて実感しました。 考え抜く意識は十分? 過去の学習から、「考えて考え抜くこと」が最も重要であると理解しました。規模の経済性については、コスト低減を考える際、一部のコストだけを抑えるのではなく、トータルコストの低減を目指す必要があります。例として、コスト単価を下げて発注量を増やすと、保管料が増える可能性があります。全体としてコストが抑えられているかを確認するため、まず全体のコストを把握し、細分化して分析することが重要です。そして、どこのコストが下がれば他のコストが上がる可能性があるか、全体を俯瞰する視点が必要です。 コストは細分化できてる? 規模の経済性を考えるうえでは、コスト全体を把握し、できる限り細分化します(事業別、商品別などの軸での細分化)。次に、考えられるコスト低減策を洗い出し、全体を俯瞰して総合的に判断することが大切です。この際、変動費・固定費も意識して細分化を行います。 習熟度は十分? 習熟度効果については、まず業務内容にかかる時間を洗い出します。時間がかかる業務に対しては、マンパワー不足なのか、習熟度不足なのかを検討します。マンパワー不足の場合は生産性の向上を目指した人員配置を考え、習熟度が不足している場合は、慣れや経験を積む時間が必要です。さらに、教育不足であれば育成も視野に入れることが求められます。

クリティカルシンキング入門

切り口を変える学びのヒント

どの分け方が効果的? データを分解する方法について、実際に手を動かしながら学ぶことができました。表からグラフを作成する際、従来は区切りのよい数字(例:5刻みや10刻み)で分類していましたが、特徴が際立つ分け方を検討することが大きな学びとなりました。 なぜ来場数が減少? また、博物館の来場数の減少原因を分析する中で、たとえ特徴的な傾向が見えても、その結果だけに安心せず「本当にそうなのか?」と別の切り口から検証することの大切さを実感しました。 どこでつまずいた? ①お問い合わせの原因分析では、顧客がどこでつまずいているかを考える際に、MECEで学んだ「プロセスで分ける」手法が活用できそうです。どの工程で問題が多いのかを明確にすることで、根拠に基づいた対応策を検討することが可能だと感じました。 要望整理で新発見? ②要望リストの整理に関しては、従来は顧客の要望が多い順に整理していましたが、顧客の属性や規模など、別の切り口でも考えることで新たな気づきが得られ、優先順位を決める際に役立つ情報が得られると感じました。 仕様調整はどう扱う? ③仕様調整については、システム上対応可能なものの、影響範囲が大きく判断が難しい課題を抱えています。来週のミーティングに向け、MECEの三つの切り口を活用して影響範囲を漏れなく洗い出す予定です。優先度の高いこの項目から着手し、ミーティングまでに発生する可能性のある事象を整理し、そのうえで課題として発生しそうな点も含めた資料を作成します。 1on1で何を伝える? また、①と②に関しては、1on1の場で上司に学びを伝える予定です。特に、①については、まず自分用のメモを作成し、顧客がどのプロセスにいるのかを把握してから対応策を検討する訓練を行います。

データ・アナリティクス入門

仮説で広がる学びのストーリー

仮説実践の難しさは? ライブ授業では、複数の仮説を立てるという基本的な部分が十分に実践できなかった点が痛恨でした。一つの仮説に固執せず、他の可能性も探る姿勢が足りなかったと感じています。また、MECEの視点で仮説を整理することも十分にできていなかったため、異なる切り口からの検証が不十分でした。 どう多角的に考えた? 仮説を立てる際には、まず複数の仮説を提示し、その中から最適なものを選び抜くことが大切です。一つの見方に偏らず、様々な要因を網羅することで仮説同士の整合性と広がりを持たせることが求められます。例えば、仮説の検討時には「ヒト」「モノ」「カネ」などの多角的な視点を意識することで、より具体的かつ網羅的なアプローチが可能になると感じています。 整理と評価はどう? 全体としては、仮説を立てるポイントが明確に整理されており、その点は非常に評価できると感じています。今後は、具体例を積極的に取り入れながら、仮説の網羅性や検証方法をさらに深めると、理解もより一層深まるでしょう。 検証法をどう考える? また、仮説を立てた後にその妥当性をどのように検証するかも重要なテーマです。MECEを実践した具体例について自分の言葉で説明できるようになると、思考の質はさらに向上します。日常の小さな問題にも仮説を導入して検証することで、実務における分析力や判断力の強化に繋がります。 チーム成果はどう見る? さらに、データ分析チームのマネージャーとして、自分自身で分析計画を立てるとともに、チームメンバーへの具体的なアドバイスや指摘ができる状態を目指すことが求められます。今回学んだ仮説思考を活用し、チーム成果を資料やグラフでわかりやすく可視化する取り組みは、今後のマネジメント業務においても大いに役立つと感じています。

クリティカルシンキング入門

試行錯誤が切り拓く学びの未来

本質をどう見極める? データ分析では、思い込みや決めつけを排除し、常にMECEの視点で多角的に検討することが基本です。入場者数の分析を通して、一つの要因だけでなく、他にも潜む原因が存在することを実感しました。また、すべての切り口を機械的に網羅するのではなく、目的に沿った仮説を立てながら実際に手を動かし、トライ&エラーを重ねるプロセスが非常に重要です。エラーは「失敗」と捉えるのではなく、「要因がなかった」と前向きに解釈することが大切です。 視点をどう広げる? データをグラフ化する際には、分解のレンジを変えることで新たな視点が見えてくるため、施策検討の方向性が変わる可能性に注意が必要です。また、報告の際は相手に何を伝えたいかを明確にし、その目的に合わせた見せ方を工夫することが、効率的かつ効果的なコミュニケーションにつながると感じました。 分析の深掘りは? 例年行っているプロジェクト業務の振り返りのためのアンケート分析においては、これまでの単なるデータ整理にとどまらず、本講座で習得したスキルを活用したいと考えています。過去の資料では、単なる数字の羅列に留まっていた部分が目立ちました。今回の学びをもとに、より深い考察と次回以降のプロジェクトに向けた提案や改善策の検討を進める予定です。 情報共有は進む? また、まず全体像を把握することを意識しながら、初期の段階で上位者へ超速報としてインプットを行い、今後実施する分析の切り口や方向性を共有したいと考えています。これにより、最終的な分析結果に対する手戻りを防ぎ、効率的な業務遂行が可能になると期待しています。さらに、今後は自分自身だけでなく、チームメンバーへの分析依頼にも対応できるよう、本講座で学んだ内容を基盤として、サポート体制の強化にも取り組んでいきたいと思います。

戦略思考入門

経験と知識を活かす!成長のヒント

規模の経済性はどう? 規模の経済性に関しては、以前の部署では固定費としての人件費に特に注意を払っていたものの、現在の部署ではその意識が薄くなっていることに気づきました。これは、企業運営において重要な指標であり、一層の意識改革が必要だと感じています。 範囲の経済性を疑う? また、範囲の経済性についても考察しました。他の事業に利用できるように見えても、安易な多角化には注意が必要です。例えば、ペンタゴン経営を試みたものの失敗した鐘紡の例は重要な教訓です。 総合演習から何を学ぶ? 総合演習を通じて、特に厳しい状況においては他社の成功例や新しいツールに飛びつきがちになることを実感しました。自分の力だけではどうにもできない人口動向や嗜好を考慮した上で、自社の強み分析や経常利益計算を進めることの重要性を改めて認識しました。 部署間の役割は? 現在の部署は事業部制であり、規模の経済性や範囲の経済性を活用する可能性があります。そのためには、自分の部署だけでなく、他の部署の業務を理解する必要があります。 結果をどう捉える? 売り上げに直結していない部署であるため、新しいアイデアやツールを積極的に取り入れる風潮があります。しかし、結果を十分に振り返る機会が少ないため、取り入れる意義や将来性を精査した上で決断することが必要だと学びました。 知識共有の重要性は? また、経験や知識を社内で共有し、学べる環境の整備も考えています。今年の9月には部署を横断してワークショップを開催しましたが、それが単発で終わることなく、継続できる仕組みを作りたいと考えています。 新挑戦の議論は? 新しいことにチャレンジする際にはよく時間的制約がありますが、事前にメリットやデメリットをしっかり議論してから取り組むことが大切です。

マーケティング入門

顧客体験×情緒価値で勝つ法則

6週間の学びの成果は何か? 6週間の学びを通して、実例演習やグループワークでマーケティングに対する理解が深まりました。特に「機能的価値」と「情緒的な価値」を学ぶことで、競合他社に勝つためには、商品にまつわる経験に+αを加えた情緒的価値が最も有用な差別化になると認識しました。結果として、マーケティングは顧客にポジティブな体験を提供し、自社の優位性を築くための重要な位置づけであると実感しました。 ライブ授業の課題は何か? 一方、ライブ授業では大局的な視点が不足することがあり、これは直近の課題と捉えています。今後は、エンドユーザーである患者の動きや、業界団体、医師会、厚生労働省などの動向を定期的に観察し、流れの変化が関係団体や企業にどのような影響を与えるか、またはどのようなアクションが必要かを検討していきます。 体験設計はどう進む? 具体的な取り組みとして、まず自社製品の機能的価値と情緒的価値を整理し、顧客にとってポジティブな体験を設計するために、ユーザーの声を丁寧に聴いて内容を整理します。さらに、顧客が持つ認識(パーセプションマップ)の理解を深めるため、インターネット調査や営業同行での顧客インタビューを通じ、定量的・定性的な情報を収集し、競合分析を経て自社の優位性を見出し、その軸に基づいた体験の創出を目指します。 マクロ視点はどう評価? また、マクロな視点を養うため、情報の入手経路の模索と整理も行います。具体的には、SNSで患者に関連するキーワードを検索し、口コミやアンケートの結果をチェックするほか、業界団体や医師会の定期総会に出席して情報を収集します。そして、厚生労働省の公式発表や新聞記事に注目し、そこから得られる情報を元に大局的な動向を把握することで、迅速な対応策を検討できる体制を整えていく考えです。

クリティカルシンキング入門

切り口変えれば未来が拓ける

事象を分解する意味は? ある事象を理解するためには、まずその事象を細かく分解してみることが有用であると感じました。一つの視点だけでは捉えきれないため、複数の切り口から分解することで、より深い理解へとつながります。また、現在の切り口に安住せず、他の可能性を常に問い直す姿勢が、新たな発見に結びつくと考えています。ここで、MECE(漏れなく、ダブりなく)という原則を徹底することの重要性が改めて意識されます。もし切り口に漏れや重複があれば、事象を正確に捉えることが難しくなってしまうからです。 財務状況はどう分析する? このアプローチは、例えば顧客の財務状況を分析する際にも非常に参考になると思います。財務諸表であるB/S、P/L、C/Fを、複数の視点からチェックすることで、顧客の財務状態をより具体的に理解することが可能になります。また、顧客理解を深めるには、事業内容や流通構造、業界の動向、さらには競合との比較も欠かせません。それぞれの項目について、どの要素が利益率低下に影響しているのか、例えば原価率の高さや売上の低迷、その背景にあるコスト増加などを詳細に分析する必要があります。 未来策はどう見つける? さらに、物事を分解する手法は、現状の課題把握だけでなく、将来の解決策を検討する際にも役立つと実感しています。今後は、この分解の手法をより一層活用し、現在の理解を深めた上で、効果的な解決策を模索していきたいと思います。 具体的な取り組みとしては、5月中に少なくとも1つ、理想は2つ以上の業界について、業界に属する上場企業のIR資料や関連書籍を参考にしながら業界分析を行う予定です。その際、業界を単一の角度ではなく、複数の切り口で分析すること、そしてMECEの原則を意識して、学びを実践に結びつける機会にしたいと考えています。

「分析 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right