データ・アナリティクス入門

データで読み解く新たな発見の旅

代表値の意義は何? 平均値や中央値は、データを簡潔に理解するための「代表値」として便利です。これらはデータ全体をおおまかに把握するために使用されます。しかし、平均値はデータのばらつきや偏りを考慮しないため、標準偏差などの指標を使ってそのデータの分散を理解することも重要です。ヒストグラムはデータのばらつきをしっかり理解するのに役立ちますし、円グラフは構成要素が占める割合を視覚的に捉えるのに有効です。特に、データに際立ったばらつきがある場合は、その点に焦点を当てて分析することで問題を深堀りしやすくなります。 計算方法の違いは? 代表値の計算方法には、単純平均や加重平均、幾何平均、中央値など様々な種類があります。単純平均は全データの合計を個数で割ったもの、加重平均は各数値に重みを付けて算出するもの、幾何平均は冪根を使って計算します。特に平均値が極端な外れ値の影響を受けやすい場合には、中央値を使用するのが適しています。 標準偏差の役割は何? また、データの散らばりを理解するために標準偏差も重要な指標です。標準偏差は、データの各値との差の二乗の平均として計算され、データのばらつきを数値で示します。さらに、標準偏差の68%ルールや95%ルールは、データの大部分がどの範囲に収まるかを示し、これも理解を助けます。 業務整理にどう活かす? このような統計手法は、顧客の業務を整理する際に役立ちます。例えば、どの業務パターンを外れ値として除外すべきか、それがなぜ合理的なのかを論理的に説明できれば、業務要件をシンプルにするのに貢献します。加重平均を使用して、一部のケースでのみ発生する業務パターンを無視しても影響が小さいことを示したり、幾何平均で業務量の年次増加率を算出し、将来のシステム投資を提案することもできます。このようなシナリオが他にもないか、引き続き検討していきたいと思います。

戦略思考入門

分析力で変える外食業界

どのフレームワークが響く? さまざまなフレームワークを学び、サンライズ社の事例を通して分析手法の重要性を実感しました。3人の主任が示した意見から、企業内部の視点だけでは戦略が偏る可能性があることを理解し、3C分析とSWOT分析が市場や競合、自社の現状を客観的に捉えるために有効であると感じました。 価値はどこで生まれる? また、バリューチェーン分析を通じて、自社がどの部分で価値を生み出しているかを明確にすることが、効率的な改善や新たな価値創造につながる点も印象に残りました。これらの分析手法は、複雑な問題を整理し戦略の方向性を決定する上で非常に役立つと実感しており、今後のビジネスシーンで積極的に活用していきたいです。 外食業態の示唆は? 今回の学びは、私が運営する外食業態にも多くの示唆を与えています。まず、3C分析は顧客のニーズ変化、競合の動向、自社の強みと弱みを把握するために欠かせません。顧客分析では、個食や中食の需要増加、SNS映えを重視する層の登場を踏まえ、競合分析では近隣の店舗や他業態の動向にも目を向ける必要があります。 自社の見直しは? 自社分析においては、料理の質、サービス、店舗の雰囲気、価格設定などを客観的に評価し、強みを伸ばし弱みを改善する戦略が求められます。加えて、SWOT分析やクロスSWOT分析を活用することで、自社の強み、弱み、機会、脅威を整理し、積極攻勢、差別化、集中、多角化といった戦略的方向性を明確にできると考えています。 成長戦略はどう? このような分析フレームワークを用いることで、変化の激しい外食業界でもデータに基づいた客観的な意思決定が可能となり、持続的な成長を実現する戦略を立てることができると確信しています。今回の学びを活用しながら、自分自身やチームの能力を高め、変化に適応できる組織作りに努めていきたいと思います。

データ・アナリティクス入門

フレームワークで拓く学びの未来

3Cと4Pで何を探る? フレームワークの各視点を用いて仮説の可能性を広く検討することは非常に重要です。3C分析では、市場・顧客、競合、自社の観点から、誰が顧客であるか、市場の伸縮、競合の存在やその強さ、自社がどのようなサービスを提供し顧客のニーズを満たしているかを考察します。同様に、4P分析では製品、価格、場所、プロモーションの各要素に注目し、製品やサービスの質、価格設定、提供方法、そして効果的な販促方法について検討します。 戦略はどう立てる? フレームワークを用いて仮説を幅広く検討する姿勢は良好であり、各視点で具体的な議論に進めば理解がより深まります。例えば、3C分析から得られた仮説を基に具体的な戦略をどのように立案するか、4Pの各要素がどのように互いに影響しあっているかを考えることが課題となります。 事例分析は効果ある? ビジネスケースに実際にフレームワークを適用し、その有効性を確認することもおすすめです。引き続き学習を進めながら、現実の事例に即した検討をしてみてください。 医療M&Aの今後は? また、医療系M&A市場については、中小規模医療機関の承継ニーズの増大や医療費抑制政策の影響により、今後も活発な動きが予測されます。一方、競争の激化や規制リスクも存在するため、専門性の向上、デジタルトランスフォーメーションの推進、さらには事業領域の拡大が求められます。 AI・DXでどう変える? 具体的には、3C分析から得られた仮説をさらに充実させ、週次のミーティングで戦略の検討を行うことが考えられます。また、4Pの観点からAIを活用した企業価値評価による業務の効率化や情報発信の強化も有効です。加えて、DXの活用によるマッチング効率の向上、事業領域拡大に向けた人材育成と確保、さらには医療費抑制政策や規制強化への迅速で正確な情報収集の自動化も検討すべき課題と言えます。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

アカウンティング入門

ビジネスモデル理解から財務分析までの学び

ビジネスモデルと数値の関係は? ライブ授業を通じて、「ビジネスモデルをとらえてから数値を読む」ことの重要性を理解しました。特に、具体的な事例を挙げられた際にはイメージしやすく、しっかりと理解できました。この考え方は、自分が現在理解している業界や業種以外のものを読み解く場合にも有効であり、情報を得るところから始めることが重要だと感じました。 学習プランの再構築は必要? 学習プランについては、予想通りに進めることができませんでした。再度プランを立て直し、生活スタイルに溶け込ませるような計画を作ることが必要だと実感しています。習慣化の難しさを改めて感じました。 財務諸表を判断基準にする意義 部品調達先選定や取引継続可否を判断する場面において、一つの判断基準としてP/L(損益計算書)やB/S(貸借対照表)の結果を取り入れることが有効だと考えました。取引先の状態を把握し(倒産リスクなど)、その情報を関係者と共有することで、次のアクションを迅速に起動できるようにしていきたいと思います。また、自社のP/LやB/Sの読み解きも続けていきたいと考えています。 B/S理解をどう深める? まずは、B/Sの理解度を整理することに努めます。その後、他社のB/Sを読み解き、自分なりの答えをまとめることで理解度を深めるつもりです。財務経理部門の方にも協力をお願いし、理解度をチェックする予定です(P/Lの時と同様に)。次に、取引先のP/Lや B/Sを読み解き、理解の定着を図ります。 学んだ知識をどう活用する? さらに、今回学んだことを共有することも考えています。人へ説明することで新たな疑問点が浮かび、それを解決することで理解力が向上すると期待しています。最後に、実務に取り込むための検討を行います。定期的に触れていかないと忘れてしまうため、実務の中で反映していくことが重要だと思っています。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

戦略思考入門

VRIO分析で差別化戦略の道筋を探る

VRIO分析の意義は? 差別化戦略を考える際、VRIO分析の重要性を改めて実感しています。この分析を通じて、組織のリソースや能力を「価値があるか」「他にはない珍しさがあるか」「他が真似できないか」「それを活かす体制が整っているか」の4つの視点から評価し、強みと弱みをしっかりと理解できます。 強みをどう見極める? 特に競争の激しい分野で持続的な競争力を持つためには、自分たちの強みを明確にすることが欠かせません。例えば、スポーツチームでは同じリーグ内のチームだけでなく、他の競技やリーグとも比較して学ぶべきか悩むことがあります。視野を広げることで新たな発見やアイデアが得られる可能性はありますが、リソースが分散するリスクもあるため、分析の範囲設定が重要です。 組織強化の鍵は? 組織の強化には、VRIO分析で見つけた強みと弱みを明確にし、土台をしっかり築く必要があります。今回、自分のチームにはまだ理解が不十分な部分があることに気づき、その気づきをもとに考えを深め、チーム全員と共有することが組織全体の成長に繋がると感じました。 方向性の見直しは? 特にゼロから組織を作る場合、深掘りする方向性が正しいか確信が持てないこともあります。だからこそ、しっかり考え抜き、全員と共有するプロセスが重要です。 理想像はどう描く? また、将来的な理想のチーム像を描くことが大切です。その理想に向かい、自分たちが他のチームとどう違い、どう差別化できるかを具体的に考える必要があります。学んだ思考のナレッジを活用し、他チームとの差異や目指すべき独自の強みを深掘りしていきたいと思っています。 理想実現の共有は? 現在の自分のチームには、将来を見据えた理想とその実現のための思考が足りないと改めて実感しています。この考えをしっかりと共有し、言い続けることがチームの成長に必要だと思います。

戦略思考入門

賢い選択で効率化を目指す!

捨てる理由は何だろう? 今回のWEEKで学んだことは、「捨てる」という行為の重要性でした。特に、目的と数値的根拠(特に利益)を持って選別することが重要だと感じました。WEEKを通して感じたのは、物事の整理・分析をし、大局的な視点で差別化した戦略を立てることで、目的をもって選択(捨てる)するサイクルが大切だということです。 効果をどう見極める? ビジネスでは、投資対効果の高いものだけを選び続けるのが理想です。しかし、最初からすべて効果の高いものを作り出すのは難しいと実感しています。限られたリソースの中で新しい施策を試しながら、投資対効果の低いものを捨て、高いものを残すというサイクルを繰り返すべきだと明確になりました。何を目的に捨てるのかをしっかり考え、一度選択したことでも目的をもってやめることが重要だと感じました。 選別基準は何だろう? WEEK内の課題では、実際に企業へのアプローチ方法を考える設問を通じて、何を基準に取捨選択するかを理解しました。これまでは漠然とした時間や工数で判断していましたが、利益率で優先順位を判断することが重要だと学びました. 集約のポイントは? 仕事の集約に際しては、効率性の高い内容を優先的に集約していきたいと思います。また、実行して非効率だと判断した場合は、捨てる選択をする勇気を持つことも心掛けます。さらに、多回数の会議や定例業務を見直し、品質を上げたい業務に集中できるように整えたいと考えています. 効率向上の戦略は? まずは目の前の問題に取り組み、課題解決に活かしていきたいです。高品質化と効率化を実現するため、現時点での課題であるリソース不足に対処します。費用対効果の悪い業務を洗い出し、捨てるかどうかをリストアップし、その上で新たに生み出したリソースをどの業務に集中させるかを選択していきたいと思います.

データ・アナリティクス入門

データで説得力を増す!MBA流の学び

講座内容の印象は? ライブ授業のアーカイブを拝見しました。今回の講座は、ビジネスパーソンが陥りがちな視点を見直し、MBA生が効果的にデータ分析を行えるよう構成されていると感じました。他のEMBA生が適切なデータ加工を行い、ケースの課題について効果的な表を作成して発表しているのに対し、私は数値をそのまま載せ、力量の差を感じることが多く、本講座の内容は非常に参考になりました。今後、レポート作成を行う際には、本講座の内容を何度も振り返り参考にしようと思います。 定量分析の意義は? パソコンを購入する時、私は「価格」と「スペック」を重視しますが、実際にはその場の感覚で購入することが多く、定性的だと感じました。ライブ授業を通じて、定量的な仕分けと表のまとめの大切さ、スモールデータを基に仮説を立て、あるべき姿を検討することが重要であると学びました。 実践の効果は? 社内の会議や発表の場でも、本講座で学んだ仮説やあるべき姿を考えた効果的な資料作成を実践していきます。この実践により、受け手の印象が大きく変わり、営業やメーカーの社内会議でも限られたリソースの中で短期間に成果を上げることに繋がると思います。ビジネスの場では、勘や直観といった定性的な判断に偏りがちですが、一工夫して定量的にデータをまとめることで、社内で数値に基づいた効果的な判断ができるようになると感じました。 一歩踏み出すのは? 普段行っている新NISAの株式投資判断や競馬の予測など、小さなことから始めていきたいです。例えば、サステナビリティに力を入れている会社を投資の目標にして、2050年のカーボンニュートラルに向けた資金の投入度をエクセルで分析し、効果的なグラフ作成に活かせると思います。また、ビジネスの場の資料作成では、小川先生の理論を基に、受け手が効果的な判断を行えるよう努めたいと思います。

データ・アナリティクス入門

データ分析で得た学びの再発見

データ分析の基本を理解する 目的を明確にすること、要素を整理すること、そして比較することがデータ分析の基本だと学びました。特に、分析は比較であるという点が印象に残っています。しかし最も重要なのは、データ分析が「何のため」に行われるのか、その目的を明確にすることだと改めて感じました。ケーススタディではデータ分析が上手くいかなかった例もあり、要因に期間や項目の一般的な回答だけでなく、上司と部下のコミュニケーションについても意見が挙げられていました。そのため、基本に立ち返る必要性を再確認しました。 具体的な要素整理のポイントは? 具体的な要素の整理を心掛けました。例題で行ったPC購入に関するディスカッションでは、メーカー、金額、スペック、OSなど具体化することで、共通認識が得られやすいと感じました。また、分析の際には定量データ同士、定性データ同士を比較することの重要性も理解しました。平均値についての説明は分かりづらい部分もありましたが、先生が示してくれたビジュアルを通じて少しずつ理解が進みました。 退職分析における「目的」の重要性 私は人事部でDX担当をしており、退職分析を行っています。職種、年齢、勤続年数といった要素を洗い出し、比較をしていますが、「目的」を見失いがちです。退職率を下げるだけでなく、「若手の」離職率、「技能職の」離職率といった具体的な目的を持ち、分析を続けていきたいと思いました。また、グラフを作成して終わるのではなく、伝えたい「メッセージ」をしっかり伝えるための改善も進めたいです。 データ分析で立ち止まる瞬間 データ分析を実践することは重要ですが、一度立ち止まって「目的」を考えること、また定期的にその目的に立ち返り確認することも必要だと感じました。私自身、考えすぎる傾向があるため、要素の整理においては柔軟な思考を持つように心がけていきたいです。

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

戦略思考入門

差別化戦略を活かした新しい挑戦

戦略の基礎をどう活かす? 今週は、差別化の重要性とそれに基づく戦略について深く学ぶことができました。ポーターの3つの基本戦略については、それが戦略の方向性を決定するためのフレームワークであることを理解しました。戦略の方向性を定める際には、コスト・リーダーシップ戦略、差別化戦略、集中戦略の3つを考慮し、競争優位性や戦略ターゲット層の広さを整理します。しかし、競争優位性は常に続くわけではないため、環境の変化に敏感になる必要もあると学びました。 VRIO分析の重要性は? また、VRIO分析では経営資源の評価において、経済価値、希少性、模倣困難性、組織の4つの要素が重要であると教わりました。その中でも、特に組織が競争優位を築くのに重要であることを理解しました。経営資源を持っているだけでなく、その活かし方も考えるべきであり、ビジネスを展開する上でこの視点を忘れないようにすることの大切さを再認識しました。 新たな手法をどう実践する? ポーターの3つの基本戦略やVRIO分析を、自分の所属する会社やプロジェクトで実践的に活用したいと考えています。特に、ポーターの3つの基本戦略は新規プロジェクトで用いることで、基本的な方向性をしっかり定めていきたいと思います。そして、実際の企業事例についても調査し、業界をリードする企業がどのようにコスト・リーダーシップ戦略を機能させているのかを分析したいと考えています。 過去の手法はどう活用する? これまで、3C分析やSWOT分析をよく活用してきましたが、今週学んだ分析手法は新しく、まだ十分には活用できていません。まずは自社のサービスに当てはめて使ってみることで、実践に移していこうと思います。そして、戦略立案の際には、商品の差別化ポイントを明確にし、今回学んだ分析手法を活かして戦略を練っていきたいと考えています。

「分析 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right