データ・アナリティクス入門

目的で広がる分析の世界

分析の目的は何? 分析は、目的に応じた比較作業として位置づけています。分析の際には、まず目的を明確にし、その目的に沿った仮説検証に必要な項目とデータを収集、分類します。そして、比較対象や基準を設定することで、結果が意思決定につながるよう意識しています。 データの見せ方は? また、データの性質に合わせた見せ方を心がけることが大切です。データ分析で明らかにしたい事柄に最適な表現方法を選ぶことで、無駄なデータ加工を避け、例えば帰還した機体を基に無駄のない結論を導くといった論拠のあるアプローチが可能になります。 仮説と経験はどう関係する? 実際、Webサイトのアクセス解析を日常的に行っているため、データから仮説を立てる経験はあります。しかしながら、売上向上や認知拡大、新規ユーザの獲得といった本来の目的達成のために、どの分析手法を用いるべきか、その根拠となるデータ解析に結びつけることが必要です。 追跡設定の必要は? さらに、解析ツールにおけるデフォルト設定以外のトラッキングに関しては、どのデータを収集すべきかが不明瞭になりがちです。よって、まず目的をはっきりさせ、必要な要素を明確に把握することを心がけています。また、取得できるデータの切り出し方次第で得られるインサイトは異なるため、どのデータがあればどのような推論が可能になるかを意識し、分析スキルの向上を目指しています。

データ・アナリティクス入門

問いを絞れば未来が見える

イシューの本質は? まず、データに飛びつく前に、何に対して答えを出すのかという根本的な課題―イシュー―を明確に整理することが大切です。イシューは、Yes/Noといった二つの選択肢程度に絞ることで、分析がしやすくなります。 数値比較の意味は? 次に、単一の数値だけでは状況が判断しにくいため、2つ以上の数値を用いた比較分析の重要性が浮き彫りになります。この手法により、数値同士の関係を明確に理解し、正しい判断を導き出すことができます。 業務シーンはどう見る? 業務シーンでは、キャパシティプランニング、リリース影響の判定、障害対応時の原因切り分けなど、様々な場面でこの考え方が活用されています。特にキャパシティプランニングの場合、ただ「リソースは足りているか?」と漠然と問いかけるのではなく、「現在の増加ペースが続いたとして、3ヶ月後にもリソースが十分確保できるか?(Yes/No)」と問いを明確にすることが求められます。 予測と対策はどうする? 具体的な取り組みとしては、過去のトレンドから3ヶ月後の予測使用量を算出し、実際に利用可能な物理的リソースの上限値と比較します。もし予測値が上限に近づく、または超える場合はリソースの増強が必要であると判断し、迅速な対応を実行していくこととなります。このプロセスを繰り返し実践することで、業務全体の質の向上につながっています。

データ・アナリティクス入門

論理と実践で掴む成長

どうして論理で考える? 問題解決にあたっては、「what」「where」「why」「how」という順序に沿い、論理的な流れを重視することが大切です。各段階で仮説を立て、安易な原因の特定や根拠のない解決策にならないよう意識しています。 仮説の深掘り大事? また、仮説設定や要素の分解の際は、必要に応じて3C(Customer/Competitor/Company)や4P(Product/Price/Place/Promotion)といった手法を用い、偏らない分析・比較を心がけています。これにより、より具体的で納得できる解決策を導き出すことが可能になります。 どうやって迅速判断? 日々の業務では、あらゆる意思決定が求められる中、根拠と基準を明確にし、迅速に判断するスキルが不可欠です。社内外で目にする数字やデータに違和感や異常を感じた際は、すぐに原因分析を行い、問題解決に向けた対策に着手することが求められています。特に、決算報告や業績予想の資料作成、報告時には、正確な原因把握と的確な対策が必要となります。 資格取得どう進む? そのため、改めて決算書の読み方や作成方法を学ぶ必要性を感じています。既に購入している教科書や問題集に着手し、日商簿記の資格取得を目標に、継続的に学習を進めています。帰任後すぐに資格を取得するという目標を掲げ、計画的に勉強を進めていく予定です。

クリティカルシンキング入門

問題解決の視点を変える新しいアプローチ

問題分析の新たな視点は? 問題を分析する際、私は分解して考えることが重要であると認識していました。しかし、まず全体をしっかり定義した上で、MECE(漏れなくダブりなく)を意識した分解方法を考慮することの重要性を理解しました。さらに、その切り口が適切であるかどうかを見直し、別の視点からアプローチすることの必要性も理解しました。 プロジェクトの収益化戦略とは? 担当部門の売上や利益を拡大する際には、プロジェクト別に社員一人当たりの売上や利益、平均単価を算出し、それぞれのプロジェクトを比較することで問題のあるプロジェクトを特定します。その上で、効率的な単価の引き上げや、社員とビジネスパートナーの入れ替え、もしくはプロジェクト継続を諦めてより収益性の高いプロジェクトにリソースを振り分けるという対策を導き出すことが可能になります。 部門の売上拡大にどう貢献する? 社員一人当たりの売上を向上させるために、社員とビジネスパートナーの入れ替えや単価アップの交渉の推進が有効です。ただし、業務知識を有する社員の配置換えは現場への負担も大きいため、十分に検討した上で実施することが求められます。また、社員のローテーションを可能にすることで、プロジェクトを離れる社員には新たなプロジェクトを担当させ、その際もビジネスパートナーを活用することで、部門全体の売上拡大につながると考えます。

データ・アナリティクス入門

手を動かす実践学習の軌跡

分析手法をどう感じる? 受講を通して、問題解決プロセスに沿いながら分析を進める手法が非常に印象的でした。目的や仮説の根拠となるデータの見せ方が多様で、読み手や主張によって使い分ける工夫が大切であると実感しました。また、比較を行う際に明確な軸を定めることで、より論理的な分析が可能になる点も学びました。 成果をどう評価する? 受講生の皆さんのアウトプットの質の高さも印象に残りました。各自が多角的に課題を分析し、仕事にどう反映させるかを常に意識している姿が刺激的でした。グラフの作成方法やデータ加工、プレゼンテーション資料の作成など、実際に手を動かしながら進める重要性を改めて認識することができました。学んだ内容を自分なりにアウトプットすることで、知識が確かなスキルへと結びつくと感じました。 業務改善のカギは? また、既存業務にデータ分析の機会が少ない中、自ら課題を見つけ改善していくためのプロセスを学んだことも大きな収穫です。まず、チーム内で起こり得る問題やその可能性を探り、起こっている原因を特定するために必要なデータを洗い出します。続いて、データの収集・加工を行い、仮定が正しいか、また改善のインパクトがあるかを確認しながら分析を繰り返す。このプロセスを上司やメンバーとレビューすることで、納得感のある提案へと昇華させる流れは、今後の業務改善に大いに役立つと感じています。

アカウンティング入門

経営理念とPLを連動させる実例学習の魅力

アキコのカフェで学んだこととは? アキコのカフェ事例を通して、PLを活用してビジネスモデルや経営理念を浮き彫りにする方法を学びました。理念を維持しながら利益を上げることが重要であり、アキコのカフェの場合、手軽さや日常感がコンセプトです。そのため、値上げではなく、仕入れの原価調整や多くのお客様に来店してもらうための施策、回転率の向上などの手段が必要です。 PLを面白く学ぶには? これまでPLは無味乾燥な数字の羅列に思えましたが、学習を通じて「難しくなくて」「面白くて」を実感できるようになりました。 自社分析で何を考慮する? 自社の分析においては、経営理念に沿ったお金の使い方をしているかを検討し、今後の資金使用にも活用できることを確認しました。業界的には属人化しやすい面がありますが、社員を大切にすることがPLにも反映されているかを見極め、それをさらに他社との差別化のために投資していきたいと考えています。 学習時間をどう確保する? まずは定期的な学習時間の確保が必要です。平日は業務に追われることが多いので、週末の朝に学習時間を設ける習慣を作ることが重要です。それができたら平日にも学習時間を拡大します。具体的には、PLの分析とインプットを行います。同業他社や近隣業種のPLの分析、さらに優秀とされる企業のPLを比較し、経験値を増やして苦手意識を払拭していきます。

データ・アナリティクス入門

平均だけじゃ語れないデータの秘密

データ分析の秘訣は? 今週は、数字に集約してデータを比較・分析する手法を学びました。単純な平均値だけでなく、データの中心を示す代表値や、どのようにばらついているかを示す散らばりの視点からも計算・分析することで、データの偏りや傾向を正確に捉えることができると理解しました。一方で、単純平均だけに頼ると誤った分析結果に至る可能性があるという点も印象的でした。特に、実践演習での受講者の平均年齢の設問において、単純平均では実際のデータの分布と乖離があることが実感できました。 最適計算方法は? また、代表値や散らばりには複数の計算方法が存在することも学びました。状況に応じて最適な計算方法を選択し、仮説の検証に役立てていきたいと考えています。 人流データはどう見る? 例えば、人流データの年度別や地域別での比較において、従来は増加率を用いることが多かったため、得られる情報が限られていると感じていました。今回学んだアプローチを踏まえ、具体的な仮説のもと、どの計算方法が最も有効かを検証していくつもりです。 グラフの意図を探す? 自分の業務では、可視化されたグラフから示唆を得る場面が多いですが、まずはそのグラフがどのようなデータ項目から構成されているのかを数値で確認し、どのような意図で作成されたのかを図表とともに理解することを意識して取り組んでいきたいと思います。

データ・アナリティクス入門

ITシステム導入の効果を比較で検証!

分析で大切な比較の本質とは? 今回の学習を通じて、以下の重要なポイントに改めて気付きを得ました。 まず、分析の本質は比較にあることです。ある場合とない場合を比較する、いわゆる「Apple to Apple」の比較が重要です。また、分析に入る前に仮説を立てることが大切であり、目的を明確にすることが求められます。具体的には「何を見たいのか」「何が見えるのか」を明確にすることが重要です。さらに、グラフを活用して視覚的に捉えやすくすることも効果的です。 ITシステム導入の比較ポイントは? これらのポイントを念頭において、バックオフィスにおけるITシステム導入の検討を進める際には、以下の点を意識して比較を行いたいと考えます。 まず、「何のために比較するのか」を明確にし、導入した場合としなかった場合の効率面やコストを具体的に、定量・定性データで比較することが必要です。何を見たいのかを明確にし、複数社での比較を実施することが大切です。また、場面によっては仮説を立てて進めていくことも考慮すべきです。 導入効果をどう検証する? 具体的には、人事系システム導入に向けて、まずは社労士などのスペシャリストからの助言を参考にしつつ、導入の目的自体を明確にします。次に複数社での比較を実施し、導入した場合としなかった場合の検証を行います。この視点で検討を進めていきたいと思います。

アカウンティング入門

学びの幅を広げるB/S分析への挑戦

カフェのB/Sから何を学ぶ? それぞれコンセプトの異なるカフェの財務指標を見ていくことで、B/Sはビジネスのコンセプトによってバランスが異なることを深く理解できました。まず、事業コンセプトが存在し、その方針に沿ったB/Sバランスであれば、同じ事業形態の他社とB/Sの比率が異なっていても問題ないという点。また、その上で事業を拡大する際にかけるコストの箇所も変わってくるということが分かりました。 B/Sの見直しをどう進める? 今後は、自社のB/Sを改めて見直し、自社および自事業のビジネスを踏まえてB/Sが健全であるかどうかを考えたいと思います。その上で、経理部門のエキスパートと議論する場を持ち、理解を深めたいです。そして、この理解を部下に共有し、事業計画の立案に取り組んでいきます。 比較研究で得られる新たな知見 さらに、同業他社だけでなく、さまざまな企業のB/Sを見て比較することで、より理解が深まると考えています。まずは、自社のB/Sの確認を続け、新たな気づきがあるかをチェックしたいです。その後、他社のB/Sを最低でも5社確認し、違いを探ってみます。 継続的な学びをどう意識する? 今回の学習を通じて、どのような学びや行動をとればより深い理解が得られるかを考えることができました。今後も興味を持って継続的に行動し続けることを意識していきたいと思います。

データ・アナリティクス入門

復活!フレームワークで変わる仮説力

3Cや4Pの知識はどう? 3Cや4Pの考え方については、以前どこかで聞いた記憶があったものの、すっかり忘れていたため、改めて学習することができた点が良かったと感じています。 仮説設定に課題は? もともと、ゼロから自分で仮説を立てることが苦手で、仮説を作る際の効率が悪く、精度も不足していました。しかし、フレームワークを活用することで、要点を整理しやすくなり、情報の捉え方が明確になったと実感しています。また、仮説を構築する際には、以前学んだMECEの考え方が非常に役立つことも再認識しました。 クロージングの秘訣は? 内定者へのクロージングの際には、他社との差別化や意向を高めるために仮説を立て、対策を組み立てる必要があります。現在持っている情報から、何を伝えれば意向が上がるのか、また、さらに追加でどんなヒアリングが必要かを仮説を通して見極めながら情報収集を行っています。 比較分析はどんな感じ? また、内定者向けのクロージングに際して、自社と競合他社を比較するための型、例えば比較表のようなツールがあると、仮説立案がよりスムーズになると感じています。転職時に比較される要素を3Cや4Pのような形で整理し、どの部分で自社が優位に立っているか、逆に他社が優位または情報不足となっているかが一目で分かれば、クロージングのための具体的な対策を立てやすくなるでしょう。

戦略思考入門

ナノ単科で学ぶ差別化戦略の極意

差別化戦略の真価は? ポーターの3つの競争戦略における差別化戦略は、競合他社に簡単に真似されないこと、そして持続可能であることが重要だと感じました。この点がとても印象的でした。通常、差別化戦略というと市場や競合に目が行きがちですが、VRIO分析を通じて自社の内部リソースからもヒントを得られるというのは新たな気づきでした。 フレームワークの連携は? また、動画学習で触れられたフレームワークはどれも重要で、「選択と集中」の考え方とも関連があり、それぞれが相互に補完し合っていると感じました。自社独自の付加価値サービスを提供し、収益性を追求する中で、差別化戦略は非常に有効であり、次の業務計画や中期経営計画策定の際にはぜひ活用したいと思います。 同業他社との比較は? さらに、同業他社の分析を行う際に、今回学んだ知識を活用することで、他者の戦略を理解する手助けとなり、それが自社の新たなビジネスのきっかけを生む可能性もあります。今後の業務計画や中期経営計画策定においても、学んだフレームワークを用いてマーケットや同業他社との比較を行い、自社の戦略が競争優位を獲得できるかを確認していきたいと思います。 自社活用の秘訣は? 最後に、どの理論やフレームワークにも利点と欠点があると思われるので、自社に適した要素を選びながら、業務にうまく活用していきたいと考えています。

データ・アナリティクス入門

着実な一歩が未来を開く

データ分析で何が分かる? 問題解決にあたっては、ステップごとにデータを分析しながら進めることで確実な解決が可能となります。また、様々な仮説を立てて検証することで、多角的な視点を得ることができ、この組み合わせにより、データ分析をより効果的に活用し、最適な解決策を導き出すことができます。 収集条件は統一できる? 自分でデータを収集し、複数の仮説を検証する場合、それぞれの仮説に対応したデータ収集の条件を可能な限り統一することが重要です。既存のデータを比較する際も、比較したい条件以外の要素を揃えた状態で行わなければ、得られる比較結果が本来の目的と乖離してしまいます。 集中が続かない理由は? 一方で、私自身は視野が分散しやすく、さまざまな仮説を考えるのは得意なものの、目的に向かって確実に進むことが苦手だと感じています。そのため、常にゴールへの道筋をステップに区切って考え、1つ1つを着実にクリアしていくことを心掛けるようにしました。これにより、自分の特性を活かしながらも、確実に問題の解決へ向かうことができると実感しています。 目標達成法はどうする? 今後は、さまざまな業務に取り組む前に、まず解決すべき最終目標とそこに至るステップを明確にし、その上で各ステップで仮説を検証しながら前進していくことで、着実に成果へと導いていきたいと考えています。

「分析 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right