戦略思考入門

差別化の鍵はターゲット明確化!

良い差別化施策の基盤は? 今週の学習を通じて、良い差別化の施策には、まずターゲットとなる顧客を明確にすることが重要だと学びました。その上で、顧客にとってどのような価値があるか、競合他社と比較した際の優位性、そしてその実現可能性や持続可能性が検討されたものであることが求められます。私はこれまで、おおざっぱな打ち手を考えがちでしたが、ターゲット顧客の明確化から始めることで、戦略に一貫性を持たせることの重要性を理解しました。また、自社の強みをしっかりと整理するためにフレームワークを活用する必要性にも気づかされました。 自社の強みを見つける方法は? ターゲット顧客を明確にすることが差別化の基盤であることを理解し、自社の強みをフレームワークで整理するという実践が価値を高めるためのブレイクスルーとなるでしょう。 カスタマーサポートでの差別化は可能? 昨年末から現在まで、自社のサービスや事業において、どう新たな価値を提供していくべきかを考えてきました。特にカスタマーサポートやカスタマーサクセスにおいて、その領域でどう差別化された強みを活かせるのかが大きな課題です。この点に関しても、今回学んだ視点や手順に沿って、特にVRIO分析を用いて強みを整理し、ターゲット顧客を明確にすることで、より広い視野で戦略を考えたいと思います。 新サービスのアイデア生成手順 まずは、自社のサービスや事業における強みをVRIO分析で書き出します。その後、ターゲット顧客を明確にし、新しいサービスや価値のアイデアを生み出します。そして、それに基づいてカスタマーサポートやカスタマーサクセスがどう動いていくかを検討し、新しいアイデアを反映させて方針をまとめ上げたいと考えています。

クリティカルシンキング入門

数字の分析で問題解決!MECEで明快に理解

数字分解で見える問題解決策 目で見た情報をそのまま鵜呑みにするのではなく、内訳の計算やグラフ化などの加工をすることで、その数値を見て問題解決のための分析を行うことが重要です。数字を分解することで、問題の要因や発生箇所を特定できます。この際、「MECE」を意識して分解を行うことで、効果的な分析が可能となります。どこからどこまでが「全体」なのかをしっかり定義し、目的に応じた分け方をすることがこの分析の鍵です。 複数の視点で数字を分析する 数字を分析する際には、一つの切り口だけでなく複数の切り口から見て比べることが大切です。そうすることで、一見正しそうな仮説の間違いに気づいたり、本質的な情報の傾向を掴むことができます。数字を分ける際は、機械的に分けるのではなく、「問題は個々にあるのではないか」と仮説を立て、それを確かめるような切り方を試みることが有効です。 採用戦略の数値で見える傾向 採用戦略を立案する際には、クライアント企業の採用プロセス(求職者への求人リーチ~応募喚起、書類選考通過率、面接合格率、内定後の意思決定率など)ごとに数値を分析します。これにより、どこでスタックしているのかを明確にし、それに応じた打ち手を考案し、実行できます。そして、それが自分で解決できる問題なのか、クライアントに動いてもらうべき問題なのかを切り分け、自身の行動を決定していきます。 戦略改良のための比較分析とは? クライアント企業の求人閲覧者を全体として捉え、どれくらいが応募し、そのうちどれくらいの人数が書類選考を通過したかを明確にしてクライアントに提示します。他社や市況感全体と比較することで、どのような傾向にあるのかを伝え、戦略を練っていくことが重要です。

データ・アナリティクス入門

データ分析の本質を学ぶ喜び

分析手法とは何か? 分析とは比較を通じて行われ、仮説を立てた後にデータを収集・加工することで得られる気付きが重要なプロセスです。定量分析の視点としては、インパクトの大きさ、ギャップ(差異)、トレンド(変化)やばらつき(分布)、パターン(法則)を考えることが重要です。データの代表値として単純平均、加重平均、幾何平均などを使い、ばらつきを見るためには標準偏差をとらえる方法が有効であることが分かりました。また、データを扱う際には、加工してビジュアル化することで一目で理解できるグラフを作成することも重要なプロセスです。 データの特異点をどう見つける? データ分析ではまず平均値を考えがちですが、データの散らばりから特異点を見つけることも重要だと分かりました。そのため、業務(調査系)で平均値のデータを参照する際は、背景に注意し、表面上の見栄えに騙されないよう気を付けたいと思います。また、実証実験で扱うデータについても、属性ごとのデータを無作為に取って平均値を出すのではなく、何と比較するのかを念頭に置き、そのデータで何を伝えたいのかを考慮してデータ分析の設計を進めたいです。今週のGailで学んだように、グラフには特性があり、自分の伝えたいデータをどのようなグラフを使って表現するかを慎重に検討することが重要です。 幾何平均やグラフをどう活用する? 今回学んだ幾何平均は耳慣れない単語だったので、自分でもう少し調べてみたいと思います。また、エクセルなどでよく使うグラフごとの特性について詳しく調べ、どんな場面でそのグラフを使用すべきかを理解できるようにしたいです。今回の学びを定着させるために、実証実験でデータ取得を検討しているメンバーに共有する予定です。

データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

データ・アナリティクス入門

データ分析の魅力に気付く学びの旅

データ分析の目的と仮説設定 データ分析においては、「目的」や「仮説」の設定が極めて重要です。解決したい問題を明確にし、まず結論のイメージを持つことが大切です。問題解決のステップをたどる際には、何が問題で、どこで問題が発生しているのか、なぜ問題が発生しているのか、そしてどのように解決策を実行するのかを考えます。そのため、データ分析は比較対象を明確にし、もし検証データがなければ用意する必要があります。 データ収集と加工の要点は? データを収集する際には、検証に不要な情報を極力除くことが重要です。集めたデータを元に、明らかにしたいことを基にデータを加工します。この際、実数と率の両方を確認することが必要です。また、やみくもに分析するのではなく、ストーリー性を持たせ、傾向を把握し、特に注目すべき箇所を明確にすることが求められます。 仮説検証で注意すべきポイント 仮説検証においては、可能性のある原因を網羅的に仮説として挙げ、そのうち原因である可能性が高い仮説を検証します。解決したい問題を明確にし、結論のイメージを持つことが再度重要になります。検証するためのデータがない場合は、担当部署に協力を求め、データを用意することが求められます。用意したデータは実数と率のグラフで表現し、新たな発見を見つけることを目指します。ただし、やみくもな分析は避けるようにしましょう。 視覚的表現の重要性とは 常に実数と率のグラフを頭の中で描くように心がけ、色々なグラフでデータを視覚的に表現することで、新たな気付きがあるかもしれません。このようにデータ分析においては、明確な目的と仮説、適切なデータの収集と加工、そしてストーリー性を重視することが重要です。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。

クリティカルシンキング入門

データ分析で見つける新しい景色

データ分析の必要性を再認識 データの工夫や分析の大切さを改めて実感しました。バスケットボールの統計表が特に印象的で、私には馴染みのない分野でしたが、その表をどのように分解し、求める分析結果を導き出すかが想像できませんでした。しかし、講師の資料で〇と●に書き換えられた際、印象が全く異なり、勝敗バランスがはっきりと見えるようになりました。まさに「こういうことなんだ」と感じる瞬間でした。 多角的なデータ再検討の意義 これまで蓄積してきたデータを、曜日別・フロア別・月別・四半期別など様々な視点で再検討しました。また、資料の受け手や質問内容に応じて、それに適した成果物を作成していくことが重要だと思いました。 具体的なデータ分析の取り組み 具体的には、以下のデータを分析し、それぞれの利用率や売り上げ、クレーム、排出量、計画、比較、問い合わせ件数などについて報告します。 - オフィス全体利用率 - フロア内利用率 - カフェテリアのメニュー売り上げ - 空調クレーム - ゴミ排出量 - 社内アナウンスコンテンツ計画 - 全国各拠点比較 - メールセンターの搬出入 - 社内問い合わせ窓口件数 イシューを意識したアクション これらのレポートは各担当者から毎月提示されます。また、問題点があれば相談に来てもらうこともあります。その際には、「イシュー」を忘れずに次のアクションに進むよう、頭の体操を常にしておきたいと思います。 経営層との対話をどう深める? 今まで経営層と話す際、緊張が先立って「うなづいて終わる」ことが多かったのですが、今後は緊張しつつも「彼らの視座から何を見ているのか」を理解し、アクションにつなげていきたいと思います。

マーケティング入門

直感とデータで挑む戦略の未来

自社の強みはどう活かす? ある企業の事例と富士フィルムの事例から、自社の既存の強みをいかにターゲットに届けるかというマーケティング手法の有効性を学びました。他社のサービスをどの程度意識し、意思決定に反映するかも重要なポイントです。機能比較のためにまるばつ表を作成し、改善点を洗い出す手法には一定の効果があると感じる一方、プロダクトの機能が他社と類似し、手数料による差別化が進むケースもあるため、実行のスピード感も求められていると実感しました。 どの軸で攻める? 経営層の直感的な意思決定によって各種プロダクトが立ち上がり、顧客層が中小企業向けから大企業向けに拡大する中で、今後どの軸で攻めるかを議論する段階にあると感じています。プロモーション手法に先立ち、まずは各プロダクトがどの伸び代に位置しているかを明確にし、戦略を立案することが最優先事項だと思います。経営陣へのインプットも含め、各種マーケティングフレームワークを用いて、伸び代の定義やデータ分析の結果を踏まえた戦略作りを進める必要があります。 戦略検証はどう進む? また、既存顧客の属性をデータで分析し、ユーザーインタビューなどを通じた現プロダクトの価値検証によるメンタルモデルの分析が欠かせません。海外サービスを視野に入れた競合分析やポジションマップの作成、事業戦略とのストーリーラインの接続、さらに市場規模(TAM、SAM、SOM)の試算など、各種分析を通して具体的な全体戦略を描くべきだと考えています。加えて、既知の要望の深掘りをプロダクトロードマップに反映するとともに、エンジニアとの密なコミュニケーションや開発リソース確保のための内部稟議も重要な要素となると感じました。

アカウンティング入門

B/Sで企業の未来を読み解く方法

B/Sって何を示す? B/S(貸借対照表)は、企業のお金に関する調達方法とその使い方を示す重要な資料です。このB/Sを詳しく見ることで、企業の事業コンセプトまで読み解くことが可能です。資産と負債は、それぞれ流動的なものと固定的なものに分類することができ、それらの割合から、どのような事業形態を取っているのかを推測することができます。 負債と純資はどう違う? また、負債と純資産の関連性も重要なポイントです。特に、純資産の割合が大きいことは、企業の安定性を示す一つの指標となります。しかし、市場が成熟していたり、市場ニーズが一定に続く事業であれば、負債が多くても返済の見込みがあるという解釈も可能です。このように、市場の安定性とその中での企業の立ち位置によって、企業の安定性についても考察を進めることができるのです。 利益はどこから来る? さらに、B/Sを通じて、事業モデルが固定資産や流動資産によって利益を生み出すものであるのかといった推測も可能です。事業を検討する際には、お金の調達方法や使い方、資産の持ち方、そして負債と純資産のバランスに関して熟考することが求められます。事業立ち上げ時にB/Sの構造を確認することで、どの部分で商機を見出すビジネスモデルなのかも明確にすることができます。 どこにリスクが? 加えて、グループ企業内の(親)商社と(子)メーカーのB/S構造を比較してみると、有名企業のV字回復や、事業再建、事業売却などについても、どの構造部分に要因があるのか、さらにどこがリスクになるのかを分析することができます。純資産の割合についても、その企業や投資家、株主にとって望ましい形になっているのかという観点で考慮すべきです。

データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

アカウンティング入門

伝統×WEB!決算数字で読み解く現実

会社の収益は見えるの? 会社のビジネス内容から、損益計算書や貸借対照表の数値を予測することが可能です。予測と実際の数字との差異を知ることで、その会社のビジネスの特徴、すなわちメリットやデメリットを理解する手がかりになります。 航空事例は何を示す? 今回のケースでは、ある航空会社が固定資産として旅客機を購入する際、何年で償却するかや、稼働率、メンテナンス費用など、どの項目を検討してどの程度の収益が見込まれているのかに興味を持ちました。自分が働くモノづくりの現場でも同様の視点が当てはまると感じています。また、近年増加しているWeb関連企業とはビジネス体質が異なるため、収益に対する考え方も違うと考えます。この点について、グループワークの中で議論してみたいと思います。 自社分析はどう進む? ① 自社のP/LやB/Sシートを確認し、自分なりに分析します。同業他社との比較も行い、どの部分が異なるのか、なぜ違うのかについて考察します。さらに、伝統的な企業と近年の企業の違いを比べ、その知見を自分の業務に活かす方法を模索します。 意見交換で何が得られる? ② 半期や通期の決算書を確認し、自分なりの見解をまとめた上で、グループのメンバーと意見交換を行います。新聞やニュースなどの情報に触れた際、その内容をWebで検索し深掘りすることで、更なる理解を深めます。 他社との違いは? 自社の半期・通期決算発表を受け、会社の現状を自分なりに考えるとともに、他社の情報にも関心を持ち、なぜ他社が強いのか、または厳しい状況にあるのかを考察することが重要です。関連する書籍にも手を伸ばしてみると、より広い視野でビジネスの理解が深まるでしょう。

「分析 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right