データ・アナリティクス入門

データが照らす学びの軌跡

意思決定はどのように? ジレンマに直面した際の意思決定プロセスについて、具体的な手順を学びました。仮説を立て、その仮説に基づいてデータを収集し、最終的な結論につなげる基本的なプロセスが身についてきたと実感しています。特に、ある教育機関で見られた事例―忙しさから採用候補者の面接時間が確保できない一方で、面接を行わなければ生徒からの不満が蓄積し、経営に悪影響を及ぼす可能性がある―は、自分がスケジュールを詰め込みすぎている点に気づかされる貴重な経験となりました。講義の冒頭で「データ分析においては、何を目的とするかが極めて重要である」という話を聞いて、改めてその本質に立ち返る機会となりました。 人口減少策をどう見る? 人口減少対策においては、何をもって効果とするか判断するのが難しく、一見、あらゆる施策を試すような印象を受けますが、実際にはリソースが限られているため、何を課題として捉えるかが大切です。今一度、どのような仮説を立て、どんな事業を展開し、結果をどのように検証するかという一連のプロセスについて考え直す必要があると感じています。最近、ある地域の各自治体が実施する政策の一部を説明変数として、UIJターンに影響を与える要因を分析した論文に触れる機会がありました。施策分野ごとに縦割りで考えがちな現状に対して、異なる組み合わせが流入人口に与える影響を示すデータに、非常に新たな視点を得ることができました。 データ調査の下準備は? 自力で高度な分析を行うには限界があるものの、まずは地域内の市町村が実施している政策を類型化し、その一覧を作成するなど、データによる調査の下準備が可能だと考えています。具体的には、関係人口や交流人口を創出する施策、雇用創出に関する施策、住居に関する施策、さらに子どもや子育て支援に関する施策について整理し、評価データをまとめていく予定です。

クリティカルシンキング入門

問いの連鎖が生む未来への一歩

思考はどう鍛える? 知識を思考力に変えるためには、知識のインプット、アウトプット、他者からのフィードバック、そしてその振り返りというサイクルを継続することが必要です。このサイクルを繰り返す以外に、思考力を鍛える手段はないと感じています。 問いは何だろう? 実務の現場では、まず「問いは何か?」という基本的な問いからスタートし、その問いを残すことや共有することが重要です。たとえば、現在何が課題なのかを見極めることは、リーダーにとって最も大きな役割だと考えています。 グラフで効果は? また、数字の力を最大限に引き出すためには、グラフ化するなど視覚的に表現することが効果的です。グラフ化することで、仕事の成果や順位の整理がしやすくなり、目で見て理解できる状況を作り出すことができます。さらに、物事を細かく分解することで、全体の解像度が高まり、適切な分類が可能になると実感しています。 抽象と具体は? 一方で、抽象的な概念と具体的な事例の行き来にはまだ苦労しています。会社目標である「生産性向上」など、抽象的なテーマを具体化できず、言葉にしないと行動に移せず、結果として自分だけでなく周囲も状況を十分に把握できない混乱が生じています。しかし、今後はこの抽象的な問題にもあきらめずに取り組み、改善を図っていきたいと思います。 意見交換で進む? そのために、まずはコミュニケーションを積極的に取ることが大切だと考えています。相手と「問いは何か?」を共有することで、意見交換がスムーズになり、課題の本質が見えやすくなると思います。次に、これまでの取り組みや経験を振り返る時間をもっと確保し、ノートやメモに記録しておくことで、長期的な視点で自己評価を行いたいです。最後に、日々の学習を継続し、新たな知識や情報の獲得に努める姿勢を忘れずに、今後の成長につなげたいと考えています。

戦略思考入門

戦略的思考で未来を描く私の挑戦

戦略思考の重要性とは? 「戦略とは何か」「戦略的に考えることで何が得られるのか」という問いを深く考える機会を持てたことは、私にとって大きな学びでした。それまでは戦略思考を漠然と身につけたいと思っていましたが、戦略思考がどのような要素から成り立っているのか、なぜ自分がそれを重要視するのかを言語化する中で、自分は特に「目指すべき適切なゴールを定める」ことが苦手であると気づきました。この気づきにより、今後の学習を通じて「適切なゴール設定」を向上させることを目指すべきだと明確になりました。 戦略思考を業務でどう活かす? 現在、製薬会社の社内外の問い合わせや製品資材作成を担う組織を統括する立場である私は、日々の業務に戦略的思考を活かせると考えています。具体的には、コールセンターの顧客満足度評価に基づく改善計画の策定と実行、新製品の上市に備えた新しい組織体制の準備とリソースの最適配分、生成AIなど新システムの導入、メンバーとの目標設定や日常業務の相談などが挙げられます。 目的を見失わないためには? しかし、議論が進むにつれ、目的を見失いがちになることがあります。なぜそれを行う必要があるのか、何をやるべきか、その決定は本当に達成可能なのか、それは顧客が求めているのか、費用対効果や将来的な影響はどうか、最短・最速で達成できるのかといった問いを常に持ちながら、適切なゴールを定めることが、これらの問いを考える手助けになると考えています。 思考を視覚化する利点は? また、多角的に考えるため、影響を与える要因を思考の中だけでなく書き出して言語化することを徹底しています。視覚化することで自分自身の考えも整理されやすくなり、相手との議論の際にも議論がスムーズに進むと実感しています。こうして影響を与える要因について考えると、どこが抜けているのかにも気づきやすくなると思います。

戦略思考入門

捨てる選択が未来を変える

専門家に任せるの? 今回の学びを通して、顧客メリットを最大化するためには、あえて不要なものを「捨てる」選択が有効であるという考え方に気付かされました。自社で多機能を抱え込むとコストが増大する場合も多く、「餅は餅屋」の精神で専門家に任せる選択肢を検討することが重要だと感じました。 どの価値を優先する? また、何かを追求すれば別の何かを失うトレードオフの問題についても深く考えさせられました。高品質な商品と低価格な商品を同時に提供するのは困難なため、効用の最大化を狙い、両者のバランスが取れるポイントを見極める必要があります。さらに、どの要素に注力するか明確な方向付けを行い、メリハリのある資源配分を心がけるべきだと学びました。 業務の棚卸しは? また、「やらなくてもいい」業務の棚卸しの重要性も理解しました。大量のドキュメントや、念のため作成された監視設定をリストアップし、現状の業務内容を見える化することで、不要な作業を見極め、業務効率の向上に繋げることができると感じました。 捨てる基準は? さらに、何を捨てるかの基準を自分なりに設定することの大切さを実感しました。「本当に必要か」「ないと困るか」「頻度はどの程度か」といった基準に基づき、不要なものを削除し、トレードオフの課題に対しては、どちらの要素を優先するか、またはどのようなバランスが理想かを考えるプロセスが重要だと考えています。 実践の手順は? 最後に、具体的なアイデアの出し方とその評価にも取り組むことが必要だと感じました。設定した基準に沿って不要なドキュメントや監視設定の整理を進め、コスト削減とセキュリティ維持、または性能とのバランスをとるための施策を複数検討しました。その中から現実的で効果の高い方法を選び、具体的な実行手順を考えることで、より実践的な取り組みができると感じました。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

マーケティング入門

魅力満載!ナノ単科体験談のすべて

顧客心理を理解する重要性 顧客心理を理解し、商品をどのように魅せるかを考えることは非常に重要です。同じ商品であっても、ネーミングを工夫するだけで売上が大きく変わることがあります。例えば、「アルミ容器のない冷凍うどん」が売れなかったが、「水のいらない冷凍うどん」と名称を変えたところ、売上が100倍にも増加したことがあります。このように、商品のイメージが顧客の持つイメージや欲求に訴えない限り、売れることは難しいのです。 競合に似てしまう罠を避けるには 商品を差別化しようとすると、競合のヒット商品に似てしまうことがよく起こります。この罠に陥らないためには、常に顧客に注目し、顧客の心理を理解することが重要です。一方、商品開発においては、イノベーションの普及要件という効果的なフレームワークがあります。これは比較優位、適合性、わかりやすさ、試用可能性、可視性の五つの要素から成り立っています。これらの要素を顧客視点で評価し、商品の魅せ方を工夫することが、顧客の心理を掴むために役立ちます。 BPO事業への参入の課題は? 私の部署では、BPO事業への参入という目標があります。商品販売ではなく、自分たちのスキルを提供する形で進んでいます。そのため、私たち自身の魅せ方についても、イノベーションの普及要件に基づいて検討しています。他社人材と比較した際の優位性や、顧客のニーズに応じたサービス提供、分かりやすい料金プランやお試しプランの提供、最先端のデジタル技術の採用を考慮しています。 観察と自己評価で顧客心理を掴む 商品について観察し、売れない理由とその解決策を考えることで、顧客心理を掴む訓練になります。この際、イノベーションの普及要件を照らし合わせ、自分であればお金を払って欲しくなるかを常に考えながら、顧客視点と心理を意識して思考することが重要です。

クリティカルシンキング入門

新たな視点を引き出すセルフ問いかけ術

自問自答は何のため? 自分に質問し続けることが、もう1人の自分を生み出すと理解しました。これは世間で言う「メタ認知」です。1人で考えると偏りがちですが、自分に問いかけたり他者と会話したりすることで、その偏りを減らすことができます。 理解の分け方は? 分からないということは、考えを分けないままでいることから来ると気付きました。逆に、しっかりと分けることで理解が進みます。これを「MECE」と呼びます。 自問で何が変わる? 自分に問いかけることで、新たな視点や発見が得られます。たとえば、何かを相手に伝えたいと思ったとき、思考の偏りがないかセルフチェックを行うことができます。 どう整理?MECEとAIDMA また、MECEを活用した思考整理の具体的な例として、ある職場で車の販売を行っている状況を考えてみました。お客様にはさまざまな関心度があり、それぞれに適したアプローチを考えるために「AIDMA」というフレームワークを利用します。これにより、どの階層のお客様なのかを把握し、それに応じた行動を整理できます。 店舗課題はどう見直す? さらに店舗の課題を解決するには、来店数や店舗送客数の減少といった問題を分けて考える必要があります。このプロセスを通じて学んだことを活かせると感じています。 スキルアップはなぜ? 私個人のスキルアップについても、お客様との会話で分かりやすく筋の通った説明に活かせる場面が多いと考えました。また、自分が話した内容を振り返り、その説明や提案をもう1人の自分に問いかけて評価することが重要だと思います。店舗の課題に対しては、分けること、そして1人で考えるのではなく他者を巻き込むことが大切です。分けた内容に対して、1つ1つ目的を忘れず取り組むことが求められます。

リーダーシップ・キャリアビジョン入門

対話で切り拓く成長の一歩

フィードバック成功の秘訣は? 今回、部下へのフィードバックのロールプレイングでリーダー役を担当しました。限られた情報の中で伝える難しさを実感し、まずは承認と相手に多く話してもらうことを意識しました。その結果、進め方についてお褒めの言葉をいただき、少し手ごたえを感じることができました。しかし、実際のフィードバックの場面では、相手の自己評価と私の評価にずれが生じることが多く、途中で問いかけや確認を行い、互いの認識を合わせる必要があると感じました。 進捗管理はどうする? チームメンバーに対しては、目標設定が完了した段階にあるため、今後は定期的な進捗チェックと必要な支援に重点を置こうと考えています。各自のモチベーションの違いにも配慮しながら、進捗確認の際には相手を承認する姿勢を大切にし、相手の話に十分耳を傾けることで、適切な支援ができるよう努めます。 どんな問いかけが良い? フィードバックの際は、できたことやできなかったことを一方的に伝えるのではなく、相手が多く発言できるような問いかけを工夫し、改善点も自分の口から語ってもらえるように導いていきたいと思います。こうした取り組みには、日頃からのコミュニケーションや自己開示、心理的安全性の確保、そして支援体制についての振り返りが不可欠です。 目標面談の意義は? また、具体的な取り組みとしては、2カ月に1回程度の目標面談を実施し、目標達成度を把握するとともに、必要な支援を確認します。経験の浅いメンバーに対しては、指示型のアプローチで進め方を指導し、普段からのコミュニケーションを心掛け、相手が安心できるような余裕ある態度を保つことを目指します。さらに、自分自身の目標達成度も定期的に管理し、振り返りの時間を確保することで、より効果的な支援を提供していきたいと考えています。

データ・アナリティクス入門

仮説で広がる学びのストーリー

仮説実践の難しさは? ライブ授業では、複数の仮説を立てるという基本的な部分が十分に実践できなかった点が痛恨でした。一つの仮説に固執せず、他の可能性も探る姿勢が足りなかったと感じています。また、MECEの視点で仮説を整理することも十分にできていなかったため、異なる切り口からの検証が不十分でした。 どう多角的に考えた? 仮説を立てる際には、まず複数の仮説を提示し、その中から最適なものを選び抜くことが大切です。一つの見方に偏らず、様々な要因を網羅することで仮説同士の整合性と広がりを持たせることが求められます。例えば、仮説の検討時には「ヒト」「モノ」「カネ」などの多角的な視点を意識することで、より具体的かつ網羅的なアプローチが可能になると感じています。 整理と評価はどう? 全体としては、仮説を立てるポイントが明確に整理されており、その点は非常に評価できると感じています。今後は、具体例を積極的に取り入れながら、仮説の網羅性や検証方法をさらに深めると、理解もより一層深まるでしょう。 検証法をどう考える? また、仮説を立てた後にその妥当性をどのように検証するかも重要なテーマです。MECEを実践した具体例について自分の言葉で説明できるようになると、思考の質はさらに向上します。日常の小さな問題にも仮説を導入して検証することで、実務における分析力や判断力の強化に繋がります。 チーム成果はどう見る? さらに、データ分析チームのマネージャーとして、自分自身で分析計画を立てるとともに、チームメンバーへの具体的なアドバイスや指摘ができる状態を目指すことが求められます。今回学んだ仮説思考を活用し、チーム成果を資料やグラフでわかりやすく可視化する取り組みは、今後のマネジメント業務においても大いに役立つと感じています。

データ・アナリティクス入門

分解と検証で明かす解決のヒント

どこに問題潜む? 問題の原因を探るためには、まずプロセスを段階ごとに分解するアプローチが有効です。これにより、どの段階に問題が潜んでいるのかを明確にできます。同時に、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが重要です。決め打ちせず、判断基準の重要度に基づく重み付けを行いながら評価する方法がおすすめです。 条件は整ってる? A/Bテストにおいては、それぞれの施策を比較・評価する際、できる限り条件を揃えることが求められます。 どうやって精度向上? また、ステップを踏んでデータ分析を行うことで、問題解決の精度を高めることができます。ある程度有望な仮説が立てられたら、まずは実行し、実際の市場や顧客の反応をもとにデータを収集して検証を重ねる方法が効果的です。 どこで・なぜ・どうやる? 自分の身の周りでデータ分析のトレーニングをする際は、まず「どこで(Where)」問題が発生しているのか把握し、次に「なぜ(Why)」その仮説が成り立つのかを立て、最後に「どのように(How)」打ち手の有効性を検証するプロセスが役立ちます。 どちらが響く? プロモーション活動のマネジメント業務において、インターネットを介した施策が難しい場合でも、どのパッケージが顧客に響くのかを検証する観点で実施することが可能です。例えば、協調すべき訴求ポイントをAパターンとBパターンで打ち出し、どちらがより顧客の反応を捉えられるかを分析・検証します。まずは、AパターンとBパターンそれぞれのアクションプランを策定しチームで共有し、条件をできる限り揃えられるよう協議します。その上で、予測されるボトルネックを洗い出し検証を進め、アクションが決まれば早速実行し、仮説検証を繰り返すことで問題解決へと結び付けていきます。

データ・アナリティクス入門

データ分析でビジネスの未来を予測する方法

分析の目的と手順は? 分析は、比較(増減や時系列の変化、数字の意味)と何を明らかにするかの仮説が重要です。仮説を立てる際には、逆算思考で分析結果の見せ方や投入時間などを考慮します。課題解決のプロセスでは、自己の中でプロセスを明確にし、目的や狙い、コンセプトを先に確立することが大切です。その後、問題を特定し、どこに問題があるのか、なぜその問題が発生したのかを明らかにした上で、どのように解決するかを考えます。 データ分析で課題をどう解決する? ビジネスにおいてデータ分析を行う際には、まず現状と理想のギャップを見つける問題発見力や課題形成力を磨く必要があります。そして、課題解決の仮説を立て、自由な発想と未来からの逆算を用います。次に、客観性を備えたデータ収集を行い、そのデータを加工し、考察と未来への洞察力を磨きます。 新しい取り組みへの挑戦 漠然と総花的な活動に陥りがちで、あれもこれもと欲張ってしまうことが課題です。採用戦略や事業計画策定の際には、採用市場データの分析スキルを評価することが求められます。定性と定量の分析をビジュアル化し、仮説を持ってデータ収集と分析、考察を効率化します。毎年の活動には、新しい取り組みに挑戦することが求められます。最新情報へのアクセスや情報分析から、課題解決策の提案力を高めて引き継ぎます。 ロジックツリーで何が見える? ロジックツリーを用いて、課題(大学・高専との関係強化構築)や採用市場の傾向(少子化・18歳人口の激減、高学歴化・編入進学、高度人材の活躍など)を整理し、それらを明確化、細分化します。これにより、人材獲得のチャンスを検討します。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じて知識をアップデートし、実践能力の向上に努めたいです。

リーダーシップ・キャリアビジョン入門

リーダーシップで見つけた新たな自分

リーダーシップのスタイルは? 今週は、リーダーシップ論に関する重要なポイントを2つ学びました。 まず1つ目は、リーダーシップの行動スタイルを分類する「マネジリアル・グリッド」理論です。この理論では、リーダーシップの評価を「人間への関心」と「業績への関心」という2つの軸で行います。最も理想的なリーダーは、この2つを同時に重視することで最高の成果を引き出すとされています。自分自身のスタイルを振り返ると、私はこの2つの軸の中間に位置しているように感じます。人間にも業績にも一定の関心がありますが、どちらも中途半端になっているかもしれません。このことから、今後はメンバーと業務への意識をより一層高めていこうと考えています。 部下支援に有効な理論は? 2つ目は、部下の目標達成を支援するための「パス・ゴール理論」です。この理論では、リーダーが効果的な支援を行うための4つのアプローチを考える際、「環境要因」と「適合要因」を考慮することが重要だとしています。ただ相手や業務の一方だけを見て行動するのではなく、両方を組み合わせて支援方法を変えていくことが効果的だとわかりました。この新しい視点を基に、相手と任せる業務の特性を理解した上で、リーダーシップを発揮していくことを心がけるつもりです。 新年度に向けた取り組みは? 新年度が2月から始まるため、このタイミングでメンバー一人ひとりと対話し、彼らのスキルや得意分野、モチベーションの源泉などを再確認する時間を取りたいと考えています。その後、適切な業務を割り当てつつ、ゴールや方向性を共有し、各メンバーに応じた支援を行う予定です。メンバーのスキルアップを目指すとともに、私自身のリーダーとしてのスキルも向上させ、より適切な行動ができるように経験を積んでいきたいと思います。

「自分 × 評価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right