クリティカルシンキング入門

目的意識で切り拓く日々の学び

目的を忘れたくない? 行動や結果の改善にばかり意識が向くと、そもそもの目的を忘れてしまいやすいです。しかし、クリティカルシンキングの受講においては、常に受講目的や業務の目的を念頭に置きながら、日々の学習を積み重ねることができました。 問題解決の秘訣は? なぜこの問題を解決するのか、解決する必要があるのかといった、目的に立ち返る姿勢で日々の業務を整理しました。進むべき方向性を定めた後は、どのように解決すべきか、これまで解決が難しかった原因は何かをしっかりと捉え、具体的な打開策を考えることに努めました。 毎週の実践成果は? また、毎週テーマを決めて実行することで、インプットがアウトプットに変わり、アウトプットがさらにインプットを磨くというサイクルを意識的に積み重ねました。常にどの方向に進むための日々の習慣を作る目的を忘れずに取り組むようにしました。

データ・アナリティクス入門

比較と仮説でつくる現場改善の秘訣

目的と仮説の効果は? 今回学んだ「目的を持った比較や仮説に基づく分析」は、土木現場における工期短縮、コスト管理、安全対策の見直しに大いに役立つと感じています。たとえば、過去の類似現場と比較して資材使用量や作業時間に差が見られた場合、その背景を詳しく分析することで無駄や非効率を特定し、具体的な改善策を立てることが可能です。 記録と検証の効果は? まずは、各現場の作業時間、コスト、事故件数などのデータを日常的に記録・整理し、月単位で過去の現場と比較する習慣を身につけたいと考えています。特に大きな差が見られる項目については、「なぜこのような結果になったのか?」という仮説を立て、関係者と意見を交わしながら原因を徹底的に究明し、改善策を現場に反映させていきます。小さな気づきも見逃さず、分析を日常業務に取り入れていくことを意識して行動していきたいと思います。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

データ・アナリティクス入門

適切な比較が導く分析力アップの秘訣

比較の本質とは何か? 分析の本質は比較にあり、適切な比較対象を選ぶことが重要であると学びました。特に、比較対象が適切かどうかを判断する際には、分析の目的に立ち返ることが大切だと感じました。 外部環境の影響にどう対処する? 中期経営計画の策定や予算予想の達成に向けて、事業の課題や改善点を過去の実績から分析するだけでなく、外部環境が事業に与える影響についても分析し、仮説を立てる場面でこの知識を活用したいと思います。 日常業務での気付きと見直し 講義を聞いた時点では、一見すると当たり前の内容に思えることも、実際に練習問題を解こうとすると、目的を忘れ、適切な比較対象を考えられないことに気づきました。私自身も業務において、本来の目的から外れた分析や結論に至ることがあるため、適切な比較ができているかを常に見直す習慣を持ちたいと考えます。

戦略思考入門

勇気ある捨てるで本来の自分へ

「捨てる」は必要? 講座全体を振り返る中で、印象に残ったのは「捨てる」という言葉に対する否定的なイメージです。一見、不要なものをすべて除去するようなネガティブな印象を受けますが、実は本来のありたい姿に近づくために必要な考え方であると再認識しました。不要なものを当たり前とするのではなく、理論に基づいたデータの解析や選択が不可欠であると感じました。 現状リセットはどう? 自部門の業務にあてはめると、不具合対策の一環で設計時に追加された検査作業など、当たり前になっている工数を見直す必要があります。まずは「捨てる=元に戻す」という視点で、現状をリセットすることから取り組み、そのためのデータ収集を確実に行います。その上で、元の状態に戻した後の改善策は、現場の努力の成果として、現場目線と会社目線の両面から業務を推進していきたいと考えています。

データ・アナリティクス入門

仮説と実践で拓く最適解

プロセス改善の秘密は? 問題解決のステップの枠組みを学ぶ中で、複数の切り口から解決策を検討するプロセスを整理する方法の大切さを実感しました。各プロセスごとに重要点に沿って仮説を立て、判断基準を明確にすることで、より的確な解決策が導き出されると感じました。また、A/Bテストを活用した検証手法からは、有効性の高い方法を見出す「実践的な知識」を得ることができ、今後の業務に大いに役立つと考えています。 アンケート改善のヒントは? 顧客アンケートを実施する際には、回答率向上のためにA/Bテストを導入し、仮説を立てながら改善点を洗い出すプロセスを試してみたいと思います。具体的には、EDMやイベント等を活用する方法の有効性を検証し、アンケート収集方法の効率化および精度向上に繋げることで、実務に直結する解決策を見出すことができると期待しています。

データ・アナリティクス入門

小さな気づきが大きな成長を生む

どう原因を見極める? 課題解決においては、まず対象の業務プロセスを細分化し、どの段階が問題の原因となっているかを明確にすることが重要です。自分の感覚だけで原因を決定するのではなく、有識者へのヒアリングなどを通じてプロセス全体を整理し、どの部分に注力するかを正しく見極める必要があります。どのプロセスを改善すれば、課題解決に大きな効果が期待できるかをしっかり検討することが求められます。 何をテストするの? また、改善案の効果を正確に判断するためには、A/Bテストの導入が有効です。改善前後の両方のパターンを同じ条件下でランダムにテストすることで、施策の効果を客観的に評価できます。さらに、システム導入のトライアルにおいては、現行システムと新システムを同時に使用することで、正確な効果測定が可能となるよう進めることが望まれます。

戦略思考入門

固定費と習熟度が創る現場革命

経済性と習熟効果はどう? 規模の経済性について学びました。固定費と変動費の違いを正確に分析することの重要性を再認識し、分析を誤ると規模の不経済に陥る可能性がある点が印象に残りました。また、習熟効果についても一定程度理解していたものの、製造現場では人が入れ替わるのは仕方のない事実であるため、個々の熟練度に過度に依存しない設計やマネジメントが求められると感じました。 自動化の影響はどう考える? 製造現場では、自動化やAIの導入により、人が関わる部分が次第に置き換えられています。こうした変化を進めつつも、システムの導入によって新たな不具合が生じる可能性や、重要な業務においては依然として人の習熟度が影響を与える点に注目しています。そのため、こういった課題についても分析し、適宜改善策を講じていく必要があると考えています。

戦略思考入門

日々の意識が未来を創る

全体振返りで何を感じる? 今週は全体の振り返りを行いました。本講座では、ありたい姿に向けてどのように進め、実現の確率を上げるかについて学びましたが、既に忘れかけている項目があることに気づき、日々の意識がいかに大切かを改めて感じました。 成果施策の効果は本当? 数字で成果が見込みやすい施策については、現状の取り組みが本当に効果的かどうかを再評価し、その上で必要な改善を行っていきます。一方、要員の育成など成果が数値に現れにくい施策に関しては、シナリオ作りからフレームワークを再度適用する方針を明確にして取り組むこととします。 日々の業務意識はどう? また、Q1の回答にも記載しましたが、使わなければ忘れてしまう内容に対しては、皆さんが日々どのような意識で業務に取り組んでいるのかを再確認することが重要だと考えます。

クリティカルシンキング入門

視点を広げて苦情対応を改善する方法

MECEはどう捉える? MECEに分解することについては言葉で知っていたものの、実際に考えると難しい部分もあると理解しました。全体像を丁寧に把握することが重要であると学びました。様々な観点から数字を分析し、漏れや重複がないか確認しながら、日々の業務に活かしたいと思います。 苦情対応の現状は? 私は苦情対応を業務で行っており、年間で約50~60件ほどの苦情を受け取っています。これまで、年間傾向の分析が疎かになっていたため、この分析を生かして品質改善に努めたいと考えています。 改善の具体策は? まず、苦情を製品別、内容別、製造所別など、様々な観点で集計・分析します。そして、そこから改善点を見つけ出し、製品品質の向上につなげていきたいと思います。また、分析結果を基に改善計画を立て、具体的な行動に移していきます。

データ・アナリティクス入門

仮説で始まる主体的成長の一歩

仮説はどこから始まる? 仮説を持つことで、対象への関心が深まると同時に、問題意識も高まるという考え方は非常に理にかなっていると感じます。仮説がない状態では、物事への関心が浅く、問題意識も十分に芽生えにくいものです。しかし、一度仮説を立てると、その正否を自ら確かめようという意欲が生まれ、自然と検証に積極的に取り組むようになります。その結果、案件に対するコミットメントが強化され、より主体的に取り組む姿勢が養われます。 改善提案はどのように? この考え方は、業務における課題抽出や改善提案の場面にも応用できると感じます。たとえば、顧客対応の効率化や新しいサービスの導入検討において、仮説を立てて検証を重ねることで、単に課題を指摘するだけでなく、解決策の妥当性を自分自身で確認しながら主体的に進めることが可能になります。

「業務 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right