アカウンティング入門

アカウンティングで読み解く国家財政

財務諸表の役割は? 財務諸表は、経営者が自社の財務状況を把握するために必要な情報を整理したものであり、その視点を理解すると、どのような項目が求められるかが自然と見えてきます。また、アカウンティングを通して財務状況を可視化することで、企業活動や事業の適正さを評価する指標が得られると感じました。 国家予算の見方は? 現在担当している国家予算の取りまとめ業務において、アカウンティングの知識を活かし、国家財政の現状や課題をより深く理解したいと考えています。国家財政における損益計算書(P/L)、貸借対照表(B/S)、キャッシュフロー計算書(C/F)の対応について検証し、全体の財務状況を把握することが重要です。 民間と行政はどう? また、民間企業と行政におけるキャッシュフローの流れについて、共通点と相違点を比較することで、それぞれの特徴や運用の違いを理解することができると考えています。 赤字国債の不安は? ニュースなどで日本が赤字国債の発行により財政を賄っている状況をよく目にしますが、皆さまは日本の財政状況についてどのようにお感じでしょうか。課題や改善点についてのご意見を伺えれば幸いです。国家財政にもアカウンティングの視点を用いながら、具体的な課題とその解決策を探っていきたいと思います。

データ・アナリティクス入門

目的再確認で拓く未来

なぜ目的は大切? 分析とは、比較を通して物事を評価するプロセスです。まず、データ収集や具体的な分析を始める前に、はっきりとした目的を設定することが不可欠です。目的が定まらない分析は、結果として次の行動に結びつかず、単なる数字遊びになってしまうリスクがあります。 どのように対象を選ぶ? そのため、目的を明確にし、適切な対象を選ぶとともに、多角的な観点から正しく比較することが大切だと考えます。データ分析に入る前に一度立ち止まり、目的に立ち返る余裕を持つことが、成功への第一歩となります。 どのように傾向を見る? 具体的には、顧客の属性データやアンケート結果から傾向を読み取り、次月以降の施策に役立てています。また、自身の働き方に関しても、どの業務にどれほどの時間を費やしているかを他者と比較し、業務効率の向上を図っています。 どうやって振り返る? このため、毎週金曜日に10~15分間の業務棚卸しの時間を設け、週次および月次での振り返りを実施しています。さらに、1on1などの機会を通じて、業務時間の使い方について他者から意見を聴取し、比較することで、より実践的な改善策を模索しています。一方で、対顧客の分析に関しては、常に目的を再確認し、施策ありきの分析にならないよう注意を払っています。

クリティカルシンキング入門

グラフとスライドで伝える力を伸ばす

メール伝達は伝わる? 日常的にメールでコミュニケーションを取る際、読み手を意識して情報を発信することには慣れています。この点において、自分の手法や考え方が適していると感じました。しかし、相手に意図が正確に伝わっているかどうかを確認するためには、直接会話を交わすなどし、必要であれば補足説明と文章の改善が求められると考えています。 グラフ活用の工夫は? グラフの見せ方に関しては、これまで気にしてこなかった機能をたくさん知ることができ、新しい工夫を学びました。これを機に、試行錯誤しながら積極的に活用したいと思っています。 業務連絡はどう届ける? 業務連絡において、重要かつ複雑な内容を多くのメンバーに効果的に伝えるためには、スライドを使用することが有効であると感じています。特にグラフの作成に対して苦手意識があったため、これからはスライド作成を積極的に行い、グラフを用いることでメッセージが明確かつ誤解なく伝わるよう訓練したいと思います。 定例会議、伝わってる? また、チーム内での定例会議においては、特に伝えたい情報をメンバーに展開することを重要視しています。会議に出席できないメンバーもいるため、スライド資料だけでも理解できるような内容を準備し、経験を積むことを目指しています。

クリティカルシンキング入門

イシューを明確化して成果を最大化する方法

なぜイシューが大事? 「イシューの明確さ」の重要性について学びました。それはプロジェクトの開始時に「何を達成すべきか」を明確にすることで、全員が同じ方向を向いて効果的に進めることができるからです。簡潔でわかりやすいイシューの設定が、問題解決の第一歩であると感じました。 相手の優先順位は? 自身の業務においても、イシューの明確化はプロジェクトや交渉の成功に直結すると思います。例えば、スポンサーとの交渉では「相手が何を最優先しているのか」をイシューとして明確にすることで、提案を的確に調整し、成果を得やすくなります。また、業務全体を通して「今本当に取り組むべき課題は何か」を意識することで、優先順位を整理し、効率よく進められると実感しています。 実行はどう進める? イシューを明確にするために、まず業務やプロジェクトごとに「何を達成したいのか」を一言で整理し、目標を共有します。その後、現状の課題を洗い出し、本質的な問題を絞り込み、優先順位を設定します。そして、解決に必要な具体的なアクションをリスト化し、締め切りや担当者を明確にして進捗を管理します。また、取り組み終了後には振り返りを行い、イシュー設定や行動計画の改善点を抽出します。このプロセスを繰り返すことでスキルを磨き、業務効率を向上させています。

データ・アナリティクス入門

数字を超える、比較の妙技

比較と目的はどう考える? 分析において、「比較」と「目的への立ち返り」の大切さを改めて感じました。何かしらの数値をグラフ化して報告するだけでは、かえって分析した気分になってしまい、実際は単なる数字の結果報告に過ぎなかったと認識しています。今後は、目の前の数字だけではなく、適切な比較対象を設定し、分析結果としてしっかり報告できるよう努めたいと考えています。 上司の反応はなぜ? 直近の業務では、状況報告を上司に行った際、好意的な反応を得られず、簡単に取得できる情報だけに依存し、見栄えの良いグラフや表を作成するだけの報告になっていたことを痛感しました。単に数値を並べるだけでなく、それぞれの情報をきちんと比較し、その内容から次の対応や施策を検討できるような報告に改善する必要性を感じています。 次の一手はどうする? そのため、今後の取り組みとして以下の点を意識していきます。 まず、分析の目的を再度明確にすること。 次に、比較する項目や内容について、上司の意見や生成AIのサポートを活用しながら見直しを行うこと。 さらに、定量的な分析だけでなく、定性的な分析も取り入れられるよう検討を進めること。 そして、最終的には目的に沿った次の対応策が検討できるような報告をまとめることを目標とします。

デザイン思考入門

スピードでカタチに!学びの実験

前職はなぜ意義ある? 前職ではSEとしてプロトタイプを作成し、フィードバックを受け取るサイクルを繰り返していたことを思い出しました。現在の業務では同じような機会は少ないですが、その経験を活かし、使用中のツールの改修や新規作成に取り入れていきたいと考えています。また、モノ作りのみならず、業務フローの改善にも生かす意欲があります。 フィードバックの鍵は? 実践までは至っていませんが、実践演習を通して、まずアイデアを形にし、ユーザーからのフィードバックを受けるそのプロセスの繰り返しが、よりユーザーが求めるものを作り出す鍵であると感じました。さらに、プロトタイプの種類によって得られるフィードバックが異なるため、何を目的にするのか、現在のフェーズはどこにあるのかを踏まえた上で、プロトタイプの作成と検証を進めることが重要だと考えています。 スピードはなぜ大切? とにかく、形にすること、そしてスピードが大切であると実感しています。形にすることで自分の考えが整理され、ユーザーやメンバーからコメントやフィードバックを得やすい状況が生まれます。そのサイクルをスピーディーに回すことが成果につながると感じました。また、ユーザーテスト前に評価基準を設定しておくことで、課題を見失わない工夫も大切だと実感しました。

デザイン思考入門

プロトタイプで未来を変える

録画での学びは? 参加できなかったため、録画で学びました。その中で「バックパックを作る」という課題について、実践を通して単に改良方法を考えるだけでなく、既存の考えにとらわれない発想の大切さを実感しました。 利用者の意見は? また、テストを実施することで、自分にはない視点を利用者からフィードバックしてもらえるという気づきがありました。特に生成AIの活用という視点は非常に参考になり、早速利用してみたいと感じました。 プロトタイプで変化は? 一番の気づきは、どうしても主観になりがちな点を、デザイン思考のプロセスに従ってプロトタイプを作成することで、ユーザー(メンバー)からのフィードバックを得られ、新たな視点が生まれるということです。現行の業務ルーチンに対しても、当たり前のプロセスに疑問を持ち、変革する際にはメンバーや有識者にプロトタイプを提示し、違った見方を取り入れる可能性があると考えました。 改善の進め方は? 業務プロセスやツールの改善においても、手順を踏んでプロトタイプを作成することの重要性を実感しました。時間がないと思いがちですが、改善サイクルを迅速に回すことが大切だと気付かされました。自分はツールの作成・改善にとっつきやすいため、まずはその点から実行してみたいです。

データ・アナリティクス入門

仮説思考で業務が変わる瞬間

仮説の幅は広い? 仮説を考える際は、正しい答えを一つだけ見つけることが目的ではなく、論点に対する仮の答えとしてフレームワークを活用し、幅広い可能性を検討することが大切だと感じました。決め打ちに陥らず、常に複数の仮説を立てる姿勢が重要です。 仮説の意義は? また、仮説を考えることには、検証マインドの向上による説得力の増強、問題意識の向上、対応スピードのアップ、そして行動の精度向上という4つの意義があると学びました。これらの点は、データ分析にとどまらず、日常の業務においても活かせる有用な考え方だと思います。 難しさはどう? 仮説思考というと難しそうに感じるかもしれませんが、普段の業務で些細な疑問を感じたときに自分なりの原因を考え始めているのであれば、実はすでに仮説思考を実践しているのだと実感しました。今回学んだ問題解決のプロセスを参考に、日々の業務に仮説思考を取り入れることができそうです。 小さな課題は? まずは、短時間で取り組める小さな課題に対して、意識的にフレームワークを活用し仮説の幅を広げることから始めたいと思います。その上で、分析時の適切なグラフ選定や結果の分かりやすいビジュアル化といった、今まで苦手としていた分野の改善にも取り組んでいこうと考えています。

アカウンティング入門

現場で磨くキャッシュフローの極意

事例で理解進む? オリエンタルランドの事例を通して、身近なサービスであればPL(損益計算書)やBS(貸借対照表)のイメージがしやすいと感じました。一方、なじみのない業界の場合は、同じ資料でもイメージしにくいという説明があり、日頃から業界構造を意識することの大切さを実感しました。また、キャッシュフローに関する業務経験があるため、関連動画を視聴することで、どのポイントに注目すべきか再確認でき、大変勉強になりました。 収支の見極めは? キャッシュフロー計算書への理解をさらに深め、良好なキャッシュフローの維持に向けた注意点や改善方法について学びたいと考えています。具体的には、キャッシュフローを最大化させるために何が必要なのか、どのような具体策があるのかを理解することが目標です。 復習で成果出る? そのために、まずは関連動画を再度復習し、自分なりにポイントをノートにまとめることを心がけます。そして、業務内の議論にも積極的に参加し、改善策の具体的な実行計画について意見を交わす予定です。 具体策は何だろう? 例えば、一時的にキャッシュフローがマイナスとなる要因を補完するためには、どのような活動が必要か、また適正なキャッシュフローの金額はどの程度であるべきかを議論していきたいと考えています。

データ・アナリティクス入門

実務で磨く!アウトプット思考の極意

実践的分析はどう進む? データ分析に関する実践的かつ体系的なアプローチを学ぶことができ、非常に実りある体験でした。講義では、What、Where、Why、Howの各ステップを意識しながら、網羅的に仮説を洗い出すことの大切さを学び、単なるやみくもなデータ分析とは一線を画す考え方を身につけることができました。 完成像をどう描く? また、アウトプットのイメージを初めから持つことにより、分析の質とスピードが劇的に向上する点にも気付きました。実務では、しばしば情報が断片的に扱われがちですが、最初から完成形を描くことで、全体の流れや数字、目的に合致したグラフ作成、さらには数式化まで一貫して対応できるようになりました。 仮説検証で何変わる? さらに、店舗オペレーションの検証や改善を行うチームでの業務において、さまざまなフレームワークや5つの分析視点を活用し、仮説と検証を徹底する重要性を再認識しました。自分自身のアプローチに偏りがあったことを改善し、チーム全体でナレッジを共有しながら、組織力を向上させる意識が高まりました。 理論と実践の架け橋は? 全体として、実践的な分析方法を通じて、理論と現場の架け橋となる知識とスキルを確実に身につけることができ、大変満足しています。

データ・アナリティクス入門

仮説とデータで磨く業務分析の極意

仮説で何を探る? 仮説を立てることは、原因を特定しやすくするための大切なプロセスです。複数の仮説を用意することや、それぞれに網羅性をもたせることで、様々な切り口から問題にアプローチできます。仮説を設定した後は、目的に沿ったデータ収集が必要となり、比較用のデータや反論を排除するための情報をまとめることが求められます。業務における仮説は、ある論点や不明点に対する暫定的な答えとして機能し、問題解決や結論導出のための道筋となります。 直感は信頼できる? 私自身は、予実管理の分析依頼に対して即座にデータに手をつけ、結論を出すスタイルで業務を進めています。しかし、今回の学びを通して、直感だけに頼った分析では非効率なプロセスになりがちであると感じました。それに加えて、分析の過程を言語化していないため、チーム内での情報共有が十分に行われていない点も課題として浮かび上がりました。 効率改善の方法は? 今後は、仮説を立てることで分析の焦点を明確にし、必要なデータの収集方法を検討することで全体の効率を高めたいと考えています。また、業務プロセスをエクセルなどに落とし込み、仮説からデータ収集までの流れを標準化する取り組みを進め、関心や問題意識を共有することで説得力のある分析を目指していきたいと思います。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。
AIコーチング導線バナー

「業務 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right