クリティカルシンキング入門

見落とさない!分解思考のすすめ

分解のメリットは? 数字の分析において、まず各要素に分解することが非常に効果的であると学びました。たとえ特定の切り口が顕著な兆候を示していても、他の視点から検証し、見落としがないか批判的に見直すことが大切だという点が印象に残りました。 MECEって何だろ? また、分解を行う際には、まずその切り口全体の定義を明確にすることで、情報が重複せず抜け漏れなく整理される(MECEの考え方)というコツも習得しました。これを踏まえ、会社内での人材や各種KPIなど複数の視点から実践していく予定です。 サーベイの分析はどう? 特に、先日実施された全社のエンゲージメントサーベイを改めて分解し、分析することで、さまざまな事象の要因をより明確に見定められるのではないかと考えています。

戦略思考入門

戦略と柔軟さで未来を拓く

差別化の意義は? 差別化という言葉をよく耳にしますが、今回の学びを通してその具体的な考え方についてヒントを得ることができました。自社、競合他社、そして業界全体の動向をしっかり把握したうえで、フレームワークを活用し、長期的な視点で戦略を検討する必要性を実感しました。また、ときには不要な要素を捨てる柔軟さも重要であることを学びました。 予算の見直しは? 一方、与えられた予算を意識するあまり、目先の数字にばかり注目してしまう傾向が見受けられました。今後は、単に数値を追うだけでなく、人材育成も含めた長期的な視点から判断することが求められると感じました。また、これまで継続案件としてそのまま放置してきた取り組みについても、整理し、不要な部分は捨てることが必要だと再認識しました。

クリティカルシンキング入門

根本原因に気づく学びの瞬間

なぜ根本原因を追究する? 今週のクリティカルシンキングの講座では、問題解決において表面的な対策ではなく、なぜ問題が発生しているのかという根本原因に注目する重要性を学びました。単に一時的な解決策に飛びつくのではなく、問題の背景をしっかりと分析し、再発防止につながる本質的な対策を考える必要性を実感しました。 どうして改善が必要なの? また、人事や労務の実務においても、たとえば「残業が多い」「有休が消化されない」といった相談に対して、単に働き方の調整を促すだけでなく、部署別や業務内容、従業員の属性などさまざまな要素を細かく見直すことが求められます。それぞれの要素を分解して根本原因に基づく改善策を提案することで、より効果的で持続可能な職場環境の改善が実現できると感じました。

リーダーシップ・キャリアビジョン入門

6W1Hで見える成長の軌跡

全体の印象はどう? 実践的な演習を通して、全体のイメージがしっかりと掴めたと感じています。同時に、自分に不足している要素についても認識することができました. プロセスの効果は? 具体的には、これまで進めてきたプロセス―目標設定の共有、計画立案、実行と振り返り―に加えて、メンバーの共感を引き出し、6W1Hの視点を整理する重要性を再確認しました。過去にも述べたように、6W1Hの視点はとても大切です. 共感はどう生まれる? また、自身の不足点や相手の考えを理解し、動機づけを強く意識すること、さらには目標の共有とその達成に向けたエネルギーの保持も重視していきたいと考えています。しかし、メンバーの共感を引き出すことは依然として難しい課題であると感じています.

クリティカルシンキング入門

分解で見える未来の戦略

なぜ事象を分解する? MECEの考え方を取り入れ、事象を分解することの重要性を再認識しました。分解には、層別分解、変数分解、プロセス分解といったさまざまな手法が存在し、それぞれの方法で要素を整理することができることが分かりました。これまで体系的に分解要素をカテゴライズしていなかったため、大変驚きと新鮮さを感じました。 営業戦略はどう変わる? また、営業やチームの目標策定の立場に立つ中で、どの顧客にどのようなアプローチをすべきかを考える際にも、MECEを活用した分析の有用性を実感しています。特に、売上、利益率、商材、受注頻度といった観点から要素を分解することで、アプローチが不足している部分を具体的に把握し、より効果的な戦略を立てることができると考えています。

データ・アナリティクス入門

実践と数字で磨く学びの軌跡

テスト条件はどう? ABテストの留意点として、テスト期間は同一にし、その他の要素は変更しないことが重要だと強調されています。これは、結果の信頼性と比較可能性を担保するために欠かせないポイントです。 数字の根拠は? また、総合演習課題では、根拠としてどの数字を用いるのが最も説得力があるかを考える点が印象的でした。さらに、課題に対しては複数の仮説を網羅的に立て、実際の検証を重ねていくことで、真の課題に迫るアプローチが求められます。 最適解はどう選ぶ? 加えて、サービス企画においては迅速かつ効率的に最善策を選び出すことが重要であり、開発者との連携の中で必要な局面にABテストを活用することで、より効果的なサービスリリースにつながると感じました。

クリティカルシンキング入門

現場の声で感じる学びの極意

情報はどう伝える? 伝えたい情報やメッセージをまず設定し、その内容がいかにより良く伝わるかを検討します。 工夫のポイントは? 工夫できる要素としては、使用するグラフの種類や単位・目盛の正確な配置、図表や文字の配置、そしてフォントや色、サイズといった文字の見せ方などが挙げられます。また、伝える相手に合わせた言葉遣いやアイキャッチ、全体の体裁にも留意することが重要です。 理解を促す工夫は? 報告資料や教材の作成は頻繁に行われるため、一度作成した後、一定の時間を置いてから短時間で全体の意味が把握できるかどうかを確認してみると良いでしょう。資料を受け取る側は他にも多くの業務を抱えていることが多いため、迅速に内容を理解できる資料作りが求められます。

データ・アナリティクス入門

戦闘機と株価が示す成長のヒント

なぜ戦闘機の事例が印象的? 戦闘機の事例が特に印象に残りました。生存するために必要な要素と不要な要素という視点で分析する方法について、従来「帰還した機体」と「帰還しなかった機体」だけで捉えていた自分にとって、大変新鮮な学びでした。 仮説検証の手法は? また、演習では2つのアプローチが示されました。ひとつは、自己が立てた仮説に対してエビデンスを提示する仮説検証の手法です。この方法は、仮説の正確性を確認するために非常に有効だと感じました。 企業成長性の判断は? もうひとつは、企業の成長性を判断するための方法です。演習で株価推移の比較を通じて、複数の論点を設けることで、個人のバイアスに左右されずにロジカルな判断が可能になる点が印象的でした。

クリティカルシンキング入門

伝え方改革:魅せる情報術

情報伝達の工夫は? 学んだことは、情報を伝える際の工夫がいかに重要かを実感させる内容でした。まず、グラフなどを活用し、適切な単位やタイトル、図表の選択によって、データの見せ方が大きく伝わりやすさに影響することを学びました。また、フォント、色彩、アイコンといった要素の一貫性と整合性が、メッセージ全体の説得力を左右する点も印象に残りました。 聞き手に寄り添う方法は? さらに、聞き手の認識や関心に合わせた説明の順序や表現方法を工夫することで、情報がより効果的に伝わることに気づきました。今後は、日常のさまざまな場面で、相手の立場や心理状態を意識したメッセージ設計を実践し、自分の伝えたいことがわかりやすく正確に伝わるよう工夫していきたいと考えています。

データ・アナリティクス入門

あなたも変われる学びの瞬間

データをどう活かす? 分析を行う際は、常に目的を意識しながらデータと向き合うことが基本です。データは単なる数字ではなく、素材と捉え、適切な調理方法や飾り付けで仕上げるように結果の表現手法を工夫する必要があります。各データの特性に合わせた分析プロセスを経ることで、他社にもわかりやすく咀嚼・理解される結果を得ることができます。 サポート状況はどう? また、作成されたサポートケース数の増減やカスタマーサーベイの結果を、製品、顧客、担当エンジニアなど複数の要素を組み合わせながら分析します。こうした取り組みによって、サポートチームが健全にオペレーションできているかを確認し、もし課題が見つかった場合には、その解決に向けた具体的なプランの策定も行います。

リーダーシップ・キャリアビジョン入門

学びを日常に!リーダー成長の秘訣

リーダーシップは何だろう? 行動、能力、意識といったリーダーシップを形成する要素について理解することで、日頃の自信と指針とすることができました。また、本講座を通して、これらの能力や意識がより一層ブラッシュアップできると実感しています。 学びをどのように活かす? 毎週の学びを、日々の業務にどのようにアウトプットするかが重要だと改めて感じました。自部署内だけで完結する業務は効率的であり、一定のクオリティが保たれやすいですが、他者や多くの組織を巻き込み、活用することで、仕事の拡張性が増し、成果もより高まると考えます。 意識をどう実践する? この意識を持ち、学んだ知見を実際のリーダーシップに繋げ、日々の業務に活かしていきたいと思います。

データ・アナリティクス入門

比較が生む新たな気づき

分析比較の重要性は? 今回の講義を通じて、分析の基本は「比較」にあると学びました。業務で調査データを扱う中で、過去のデータとの比較は無意識に行っていたものの、今回意識的に言語化することでその重要性を改めて実感しました。 データ整理ってどう? また、データの要素を整理する方法も学び、意味のある値とそうでない値を見分けることの大切さが身に染みました。これまではその違いを意識していなかったため、新たな視点を得る良い機会となりました。 比較で何が見える? 今後は、業務において製品の売上や調査結果、製造パラメータなどさまざまなデータを扱う際、必ず過去の事例や他社のデータと比較し、違いを明確に伝えることを心がけていきたいと思います。
AIコーチング導線バナー

「要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right