データ・アナリティクス入門

実践で磨く解決力の秘密

プロセスはどう区別? 今週は、問題解決のプロセスにおいて、仮説を立てて検証し、解決策を考えるための考え方を学びました。まず、WHYの段階では、各プロセスを分けて考える手法の重要性を再認識しました。プロセスごとに名称や意味合いを設定し、母数や基準が異なる場合には「率」といった数値化の視点を取り入れることで、どの段階で数値が少なく、全体の推移がどうなっているかをバランス良く把握することが大切だと感じました。 対概念の効果は? また、原因の仮説を立てる際には、「対概念」という方法を用いることで、問題に関わりのある要素を洗い出し、それらを2つの対に分けることで、より幅広い視点から原因の可能性を探るアプローチの有効性を学びました。 A/Bテストの意味は? さらに、HOWの段階では、A/Bテストを通して仮説を実際に試し、データを集計しながら解決策へと繋げる方法について学びました。A/Bテストを行う際は、①目的と仮説を明確にすること、②一度に一要素ずつ検証すること、③条件(時間や期間など)を揃えることの3点が重要であり、これによりリスクを抑えつつ効果的な施策の検証が可能となります。 知識集約はどう進め? また、今回の学びを通じて、これまでの知識を集約し、プロセスを意識して丁寧に分析する重要性を再認識できました。仮説設定の根拠を明確にし、必要なデータを整理することで、より高度な分析に繋げるための前提意識を持つことが求められると感じました。 薬剤師業務の改善は? 一方、薬剤師業務のボトルネックの分析においては、業務を細かいプロセスに分解し、どの段階で時間と労力がかかっているかを明確にすることが、従業員の残業時間や患者の待ち時間短縮に直結する重要なポイントであると学びました。こうした検証を通して、設備の導入などの改善策の効果を試験的に確かめ、必要に応じて他の現場にも展開する判断材料とする考え方は、非常に実践的だと感じました。 A/B分析で見直す? さらに、部内でA/B分析を活用して、例えば店舗の処方箋枚数の伸び悩みという問題に対して、複数の要因を一つずつ検討し、原因を絞り込んだ上で対策を考える手法も学びました。これにより、問題の背景にある具体的な要因を多面的に理解し、適切な対策立案へとつなげることができると実感しました。

リーダーシップ・キャリアビジョン入門

リーダーシップを磨くチームの秘訣

マネジアル・グリッド理論とは? 優秀なリーダーの行動を分析するためのマネジアル・グリッド理論は、リーダーの行動を「人への関心度」と「業務への関心度」の二つの軸で評価することで、リーダーが周囲に与える影響を客観的に分析する手法です。 パス・ゴール理論の重要性 一方、状況適合理論の一つであるパス・ゴール理論は、リーダーが「環境要因」と「部下の適合要因」を考慮し、適切な行動をとることが重要であると説きます。具体的には、リーダーは同じ部下であっても、業務や職場の状況に応じて支援の仕方を柔軟に変える必要があります。さらに、チーム内でも、部下の能力やスキル、自己解決意欲に応じてリーダーシップのスタイルを調整することが効果的です。 リーダーとしての自己振り返り 自身の仕事で振り返ってみると、メンバーに仕事を任せる場面や新たなチームを結成する場面で、この理論を活用できると感じます。 メンバーへの適切な指示方法は? メンバーに仕事を任せる際には、例えば既存業務において、経験やスキル、自発性・成長意欲の異なるメンバーに対して、指示や支援の程度を調整します。A氏には自立性を活かし、目的とゴールを伝える程度で任せます。一方、B氏には課題点を共有しつつ意見を募り、C氏には初期のタスクを具体的に教えた上で任せます。新規業務では、特にC氏に対して細やかな指示と進捗管理を行います。 チーム結成時のリーダーシップ選び また、今後チームを結成する際には、マネジアル・グリッドを利用してサポート役を選定したいと考えています。私は自身を「タスク志向型」もしくは「タスク志向型と中間型の間」と認識していますが、「社交クラブ型」のサブリーダーを組み合わせることで、チームが一層円滑に機能するでしょう。 フィードバックの重要性は? 重要なのは、部下の適合要因を把握し、それに基づいてリーダーシップの方法を試行錯誤し、適応させることです。また、マネジアル・グリッド理論を基に、自身のリーダーシップ行動についてメンバーや上司からフィードバックを求めたいと思います。これにより、他者の認識と自分の認識に差異がないか確認し、さらにはメンバーや上司がこのアプローチに満足しているか評価してもらいたいです。メンバーからの直接的な評価が困難な場合、上司に間に入ってもらうことを考慮しています。

データ・アナリティクス入門

プロセス重視で解決策を見つける秘訣

解決策立案の重要性を痛感 今回は、問題解決のプロセスである「What」「Where」「Why」「How」の「How(解決策の立案)」について学びました。このステップでも、「What」「Where」「Why」同様、複数の仮説を立てることが重要で、仮説の質が問題解決の精度に大きな影響を及ぼすことを改めて実感しました。プロセスに分ける、対概念を活用し対に分けるといったアプローチを学びました。 最適解の選び方を知ろう また、最適な解決策を選択する際には、複数の判断基準を持ち、その重要度に基づいて重み付けを行い、基準を揃えて総合的かつ定量的に評価することで、決めつけや思い込みを排除し、客観性と説得力を担保できると学びました。 仮説検証をハイサイクルで さらに、仮説の確からしさを求めすぎず、仮説検証をハイサイクルで実施することで、より良い仮説検証が行われ、結果として本質的な解決策に結びつくことを理解しました。 共通の留意点とは? 「What」「Where」「Why」「How」の各プロセスで共通して留意すべきポイントは以下の4点です。 1. 目的と仮説を明確にする。 2. 複数の仮説を立てる。ビジネスフレームワークや「分ける」という概念を活用する。 3. 仮説を検証する際は、基準を揃え、分析結果を基に定量的に評価する。 4. 仮説の設定と検証をハイサイクルで行う。 計画策定に向けた意識改革 次期中期事業計画の策定時には、現場で培った経験や勘で導き出した答えを、ビジネスフレームワークを利用して正しいプロセスを一つずつ踏んで答え合わせする意識を持ちたいと思います。ビジネスフレームワークの選定、指標や基準の設定、仮説の構築、データの収集・比較・定量評価、仮説の検証、本質的な解決策の選択など、あらゆる場面で客観性と説得力を備えた事業計画を策定することを目指します。 日常業務での実践ポイント 日々の現場業務の中でも、以下の2点を意識して深く考える癖を身に付け、具体と抽象を行き来することを習慣化したいと思います。 - より高い視座とより広い視野でものごとを見つめるマインドセットを持つ。 - 仮説の確からしさを求めすぎず仮説検証をハイサイクルで実施する。 心に留めておくべきキーワードは「一つ一つ丁寧に」「プロセスを重視する」「胸を借りる」です。

デザイン思考入門

発想転換で掴む次世代解決策

どうして視点変更? ライブ講座のプロトタイプ発表では、視点を変えることの大切さと、課題解決において意外な効果があることを学びました。特に登山用バックパックをテーマとして、課題の捉え方を変えると解決策のアプローチも異なり、全く新しい応用例につながることが印象的でした。また、参加者全員が否定せずに各自のアイディアを前向きに受け止め、議論が活発に進んだ点が良かったと感じます。初期段階では改善の余地があるアイディアも多いですが、そうした点に踏み込んで議論する雰囲気作りが重要だと実感しました。 効果はどこから来る? 今回の体験は、単に商品開発に留まらず、他の業務にも応用可能な思考の枠を広げるワークショップとして十分な効果があると感じました。自分の思考の癖に気づく機会にもなり、技術的な面は後回しにしてまずは豊かな発想を引き出すステップが新たなアイディア創出に必要であると学びました。 なぜ議論は難しい? また、アイディアを出す際にはスキャンパー法を試してみたいと思います。今回のシェアや議論はスムーズに進みましたが、実際の職場では以下のような理由からディスカッションが難しい場合もあると感じました。 ・ポジティブな議論に慣れていないため、否定的な雰囲気になりがち ・結論を急ぐ傾向があり、十分な議論が行われない ・現状維持を好むため、新たなアイディアが無視される ・いかにアイディアを出しても、従来通りの結論に戻ってしまうと感じる ・突飛なアイディアを受け入れる土壌が整っていない ・質問を避ける傾向にある こうした状況に対しては、1~3枚程度のスライドにアイディアをビジュアル化し持ち寄ることで、言葉だけでは伝わりにくい発想を明確にし、議論を促進できると感じました。実際、業務においてプロトタイピングの機会は少ないものの、AIやクラウドサービスを利用すれば自分の考えを手軽にビジュアライズできるため、非常に役立つと実感しました。 どう未来を描く? 今後は、対象顧客の課題をしっかり理解し、その中から解決すべき点を明確にした上で、アイディアの出し方やビジュアル化、フィードバックの仕組みを業務に取り入れるステップを意識していきたいと思います。一旦アイディアを数多く出し、形にして共有することで、より実践的な問題解決につなげていく方針です。

クリティカルシンキング入門

思考の偏りを超え新しい自分に出会う

当たり前は実践でき? ビジネスの場で重要なのは、「言われてみれば当たり前のこと」をどれだけ意識的に実践できているか、という点です。人間は「考えやすいこと」や「考えたいこと」に無意識に集中してしまう傾向があり、これが思考に制約を与えることがあります。自分の思考には偏りがある可能性が高いことを理解し、それを大前提とすることが重要です。 自己批判の意味は? 「クリティカル」の意味は「批判」であり、その批判の対象は自分自身であるべきです。自分自身に意識を向けることによって、自らの考えをチェックし、もう一人の自分を育て、自分の考えを客観的に見直す習慣を身につけることが大切です。このスキルは独学では身につかず、他者との意見交換を通じて偏りを認識し続けることが有効です。 発想法のコツは? さらに、自分の経験や思い付きだけで発想しないために、効果的な「頭の使い方」を心得ておくことが大切です。「分ける」といった思考方法を活用します。例えば、考え始める際に対になる概念を意識し、そこから発想を広げる方法や、小さな案の共通点を見つけ出し、それを基に新しい発想を考える「具体と抽象のキャッチボール」が有効です。 実行方法はどう? 具体的な方法として、次のような取り組みが挙げられます。部下と課題解決策を一緒に見直し、頭の使い方を意識して多角的に検討した上で実行を指示する。そして、企画や発案の際にはメンバー全員に思考の偏りを自覚させ、共に意識を向けさせることが重要です。また、思い付きや直感に基づく行動を避け、じっくり考えて判断します。そして、お客様にとって何が最良かを考える際、自分一人ではなく他者と意見を出し合って決定することが求められます。 在り方変革は? まず自分自身の在り方を変える必要があります。過去には、自由に発言しているつもりでも常識の範囲内で発言していたり、周囲との調和や感覚を意識しすぎて意見が制約されていました。しかし自分の概念には偏りがあることを自覚できたので、制約された発言では意味がないと気づきました。今後は自ら意識して制約を外します。 意見の受け止め方は? これにより、自分や多くの人と異なる意見に対する受け止め方も変わるでしょう。会社でのミーティングでも少数派の意見に耳を傾け、見逃していたヒントを大切にしたいと思います。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

クリティカルシンキング入門

イシュー解決力で実務が変わる瞬間

今週の学びは何? 今週、このコースの学びを整理し直し、3つの重要な点を改めて認識しました。 問いの意義は何? 第一に、「問い」が何かを考え、それを明確にすることは非常に重要です。イシューを特定することで、なぜその問題について議論しなければならないのか、その目的がはっきりします。 イシューをどう特定? 第二に、イシューを特定するためには、既存のデータを様々な角度から分析し、ピラミッドストラクチャーで情報を整理・構造化する必要があります。これにより、本質的な問い、「イシュー」を決定し、解決することが可能となります。 表現方法はどう? 第三に、相手の立場に立って表現し、主語や述語を明確にすることが大切です。スライド作成時は、グラフの活用やメッセージの強調などを通して、何を伝えたいのかを分かりやすく示すことが求められます。 業務にどう活かす? この学びは、日常の業務、たとえば「関連部署への調達コスト説明報告」や「新規プロジェクト立ち上げ・運営」「部署内の売上報告」など、さまざまな場面で活用できます。なぜなら、これらはすべて課題解決や他者との協働を伴い、問いを特定し、構造化して解決することが本質だからです。また、他者に対する表現は、強調するポイントやメッセージを明確にすることが重要です。 調達報告は何故? 具体的な活用例として「関連部署への調達コスト説明報告」を挙げると、以下のようになります。 【考え方】 これまで、報告内容は漠然と定められていましたが、まず「なぜ報告するのか、相手は何を知りたいのか」を明確にすることから始めます。これにより、報告内容や方法、頻度、対象者を最適化できます。特に調達コストについては、各品目の状況に応じた本質的なポイント「イシュー」を特定し、説明に活かしたいと考えています。大きな金額や重要品目については、ピラミッドストラクチャーを作成・提示し、その考え方を共有することで、相手の納得度も高まると感じています。 伝え方はどうする? 【表現】 先方が知りたいことや、その後の情報の取り扱い方を明確にした上で、グラフの見せ方や強調ポイントを調整します。また、どの視点(相手目線、自部署目線、自分目線)で話をするのかに注意を払い、主語と述語を明確にしながら報告を進めます。

データ・アナリティクス入門

数字が語る!原因分析のコツ

原因分析のポイントは? 「why:原因を分析」という問題解決のステップについて学び、実際の業務に活用するためのヒントを得ることができました。原因分析では、問題がなぜ発生したのかデータを基に追及し、原因が特定できた後に解決策を検討するという流れを確認しました。 プロセス分解の極意は? この授業で得た学びは主に2点あります。まずは、データをプロセスに分けて考える方法です。課題では、ウェブサイトの広告表示から体験レッスンへの申込に至る一連のプロセス(広告表示→広告クリック→申込)の各段階のデータを比較し、同じ経路を辿った中でどこで数値が落ちているかを検証しました。比較する際は、各プロセスの分母が異なるため、率で示す点が重要です。率が低いプロセスに問題があると考え、具体的な原因を探る有効な手法だと実感しました。この方法により、どこから改善に取り組めばよいのかが明確になり、必要なデータの選定も容易になると感じました。 原因思考の広がりは? 次に、原因を考える際は思考の幅を広げる必要があると学びました。フレームワークの一つとして、対概念という視点を活用する方法があります。たとえば、「自社の戦略に原因がある」と「自社の戦略以外の要素に問題がある」という二つの視点から原因を考えることで、一方向への固執を避けることができます。この手法は、原因の決め打ちを防止するのに非常に有効だと感じました。 遅延の要因は? 実際の業務で、業務の遅れが他部署に影響を与えている場合、まずはその業務を複数のプロセスに分解し、どの段階でボトルネックが発生しているのか、数字を元に比較することが有効だと考えます。原因追求においては、MECEの考え方も必要不可欠です。さらに、原因に関わる要素が明らかになったら、それ以外の可能性も併せて検討することで、一面的な見方に陥らずに対策を練ることができると実感しました。 学びをどう今後活かす? この学びからは、事象には必ずプロセスが存在し、分解して比較することで原因を特定できること、そしてよい事例についてもプロセスの整理が応用可能であることを改めて確認しました。今後は、問題だけでなく成功事例にもプロセスの視点からアプローチし、より幅広い視野で原因と対策を考えられるよう努めていきたいと思います。

データ・アナリティクス入門

ナノ単科で見つける問題解決の鍵

どう進める? 問題解決のプロセスでは、ステップごとに考慮し、解決の基準を言語化し、数値化して、関係者内で合意を得ることが重要です。具体的には、問題の明確化(What)、問題箇所の特定(Where)、原因の分析(Why)、施策の立案(How)という流れで進める必要があります。あるべき姿と現状のギャップを定量化することも求められます。このギャップには、正しい状態に戻すための問題解決と、ありたい姿に到達するための問題解決の2種類があります。 どう区別する? また、MECE(もれなくダブりなく)に基づいた分け方での問題の区別が重要です。施策の検討においては、ロジックツリーを用い、施策案を作成し、ファクトに基づく評価基準で絞り込むことが必要です。さらに、複数の切り口を検討する準備をすることが大切です。 分析はどう? 定量分析には5つの視点があります。具体的には「インパクト(全体への影響度合い)」、「ギャップ(目標との比較)」、「トレンド(時間軸での把握)」、「ばらつき(集中、均一)」、「パターン(外れ値や変曲点の活用)」があります。特に外れ値については、積極的にビジネスに活用する視点が新しい考え方です。 数値はどう見る? 案①「正しい状態に戻すための問題解決」では、年度目標未達が具体的な問題であり、KGI(人数・収入・営業利益)やKPI(Web流入数、CVR、CTR)が定量化されています。やるべきことは、販売チャネル別の数値把握、変数分解の可視化、定量分析の5つの視点で再検証を行うことです。具体的には、販売チャネル別の人数・収入・利益を再検証し、優先順位を設計し、施策を可視化します。 組織はどう整える? 案②「ありたい姿に到達するための問題解決」では、来年度の組織編制が具体的な問題として挙げられています。計画人員やグループ数が具体的に定量化されており、現状の可視化、中長期的なトレンド把握、目標設定が必要です。具体的には、各課の強みや啓発点の洗い出しを行い、組織の現状の業務が将来の目標に向けて十分であるかを評価し、不足もしくは不要な業務を見定めます。 まとめはどうする? このように、問題解決のステップとMECEなどの手法を用いて、具体的な解決策を導き出すためには、論理的で整理されたアプローチが不可欠です。

クリティカルシンキング入門

視点を変える!新しい発見を楽しむ方法

思考の偏りを防ぐ方法は? 思考は無意識のうちに偏りがちです。この偏りを防ぐためには、まず目の前の課題をさまざまな視点で分解し、問題点を列挙することが大切です。過去の事例や類似の事例を参考にしつつ、新たな視点を意識し、失敗例の分析も重視します。その際、項目を分類して整理し、自分とは異なる視点でアプローチを試みます。また、他者との意見交換を行い、異なる部署や職種、年齢の人々と意見を交わすことで見落としていた視点を見出します。さらに、自分の思考を客観視し、異なる発想を取り入れて思考の多様化を図ります。 医療機関の企画立ち上げの鍵は? 例えば、医療機関で新たな企画を立ち上げる場合、救急患者の受け入れを増やすためのプロジェクト会議が行われます。一般的には断らずに受け入れる体制づくりや業務改善が議論されますが、この会議では、他の医療機関から依頼があった際に職員を派遣するという新たな案が出されました。プロジェクトリーダーはこの案を中心テーマとして採用し、議論を進めることを決定しました。 プロジェクトリーダーの戦略とは? 議論が進む中で、推進派、慎重派、反対派が形成され、リーダーは推進派に具体的なプレゼンテーションを求め、反対派には負の側面の指摘を促しました。また、参加者全員に他者の視点から考えるよう求め、課題の整理と過去の事例の参考を奨励しました。議論が感情的になりやすいことを懸念し、冷静な意見交換を指示。自分の立場を客観的に見直し、本当の問題点を探る努力をしました。 効果的な会議進行の工夫は? 会議進行については、プロジェクトの最終目標を明確にすることが重要です。会議方法を事前に定め、時間制限を設けることも一案です。意見交換は言いやすい雰囲気を作り、他者の立場を考慮する視点を持つよう明確に指示します。課題はカテゴリごとに整理し、異なる立場からの意見を評価します。特に、短期的効果と長期的効果を区別しながら、リスクを整理し、解決策を議論します。 会議後の振り返りの重要性は? 過去の事例をもとに具体的な資料を準備し、成功要因・問題点を明示する努力も必要です。会議終了後には振り返りを行い、進捗を共有します。さらに、リーダー自身も自らの推進意欲が過剰になっていないか再評価し、第三者による評価システムの導入を検討します。

データ・アナリティクス入門

ビジネスフレームワークで仮説を確かめる方法を学ぶ

効果的な仮説の立て方は? 今回は、「Why(原因の分析)」について学びました。このステップでも「What」「Where」同様に、複数の切り口を持ち、複数の仮説を立てることが重要だと実感しました。特に、切り口の感度の良さや仮説の筋の良さが問題解決の精度に大きな影響を及ぼすことを改めて痛感しました。高い視座と広い視野を持ち、ビジネスフレームワークを活用して大局的かつ網羅的に複数の仮説を立てることが有効だと学びました。 具体と抽象の使い分け方は? また、仮説の分類として「問題解決の仮説」と「結論の仮説」があり、前者は具体化、後者は抽象化が肝要です。具体と抽象を使い分けて行き来できるように練習することが必要だと改めて感じました。 データ検証のプロセスの重要性は? そして、仮説は検証して初めて意味を持ちます。データを収集し(既存データに不足があれば新たにデータを集め)、指標を定め、その指標で比較できるように適宜データを加工し、段階的に仮説を絞り込み検証を繰り返すプロセスが重要であると学びました。 ツールを活用するために何が必要か? ツールがあることは助かりますが、使いこなせなければ意味がありません。仮説設定やデータ収集・結果の比較を通して「経験や勘による決め打ちや意図的な絞り込み」という負の側面が出ないように、正しいプロセスを意識し、目的に適したツールを正しく使いこなせるように練習を繰り返したいと考えています。 次期事業計画の策定にどう活かす? 次期中期事業計画の策定時には、このプロセスを活用します。「なぜ今ターゲット顧客から選ばれているのか」を深堀りし、仮説を設定してその再現性と競争優位の持続可能性を検証したいと思います。どのビジネスフレームワークを使って仮説を設定し、どの指標で比較し絞り込むかを考え、一つずつ丁寧に進めていきたいです。 客観性と説得力を保つためには? 『経験や勘で導き出した答えの確からしさを、ビジネスフレームワークを用いて正しいプロセスを踏むことで確認する』という意識を持ちながら、フレームワークの選定や指標の設定、データの収集・比較、仮説の絞り込みなどの過程で、経験や勘による決め打ちや結論ありきの意図的なものにならないよう常に意識し、客観性と説得力を担保するように努力します。

デザイン思考入門

共感と試行錯誤が未来を創る

どんな発見があった? デザインシンキングを学ぶ中で、私たちがこれまでの「あとおし」の活動で実践してきたことに気づくことができました。特に、デザインシンキングのプロセスが、地域づくりや課題解決に直結しているという点に印象を受けました。例えば「共感」のフェーズでは、地域の声を直接聴き、住民の思いを尊重してきた経験があります。また「問題定義」では、単に課題を洗い出すのではなく、本当に解決すべきことは何かを改めて考える機会となりました。さらに「アイデア創出」では、ワークショップや対話を通じて新しい発想が生まれ、また「プロトタイピング」では、小さな試みを重ねながら改善していく方法が、イベントづくりなどに活かされると感じました。 どう変わる未来? 今回の学びを通して、デザインシンキングという概念が、これまでの活動の意義をより明確にしてくれたと実感しています。今後は、意識的にこのプロセスを取り入れることで、地域が持つ可能性をさらに広げていきたいと思います。 住民とどうつながる? また、デザインシンキングの考え方は、地域の課題を整理し、住民と共に解決策を考える際に非常に効果的です。振興計画の策定やマルシェの企画では、住民の声を丁寧に拾いながら、試行錯誤を重ねるプロセスが役立っています。加えて、移住者と地元住民の交流や自治体との協働において、双方の立場を理解しながら進めることで、より良い関係の構築が可能だと感じました。さらに、SNSで活動のプロセスや工夫を伝えることで、共感を呼び、より多くの人々とのつながりを生む工夫ができると実感しています。 実践策はどう? 具体的には、地域振興計画の策定時には、住民の意見を深く聴くための対話の場を増やし、課題整理を丁寧に行うことが大切です。マルシェでは、新しい企画を小規模に試し、参加者の反応を見ながら改善を重ねる取り組みが効果を発揮します。移住者と地元住民の交流においては、双方のニーズを事前に把握した上で、無理なく関われる場を設計することが求められます。自治体との協働では、関係者との対話を重ね、共通の目的を明確にする努力が必要です。そして、SNS発信においては、単なる活動報告ではなく、プロセスや工夫を伝えることで、共感を誘うストーリー作りが重要だと感じました。

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right