データ・アナリティクス入門

MECEで切り拓く!新たな論理学習

理想と現状の違いは? 問題解決では、まず理想の状態と現状のギャップを定量的に把握することが重要だと再認識しました。現状を正常な状態に戻す対策と、ありたい未来の実現に向けた解決策の2つの視点が必要であることを確認しました。 ロジックとMECEはどう? 今回の学習でロジックツリーとMECEの考え方について改めて学ぶ機会を得ました。これまで自己流になっていたロジックツリーを正しく再理解できたのは大変有意義でした。また、MECEの手法により、漏れや重複を防ぐことの大切さを実感しました。普段の業務では口頭だけで場合分けを行い、チーム内に認識のズレが生じることもあるため、今後はロジックツリーを活用し視覚的に共有するよう努めたいと思います。 分析の壁はどう? 一方、日常の業務においては、数字を追いかけ原因を探る分析作業が少ないため、新たに異動してくるメンバーが「分析」という言葉に戸惑うケースも見受けられます。演習問題の形式では対処できても、実際の業務課題にこの手法を効果的に結びつけるのは難しいかもしれません。そのため、全体像を把握しながら論理的思考を実践し、可能な限り定量化して原因を追究する問題解決のプロセスを指導していく必要性を感じました。

クリティカルシンキング入門

本質問いで拓く学びの未来

本質の問いは何? 課題解決では、まず手法に入る前に、現在直面している本質的な問い、つまりイシューを確認することが大切です。イシューは問いかけの形で整理し、具体的に記載することで分かりやすくなります。 要因はどう整理? イシューを見つけるためには、複数の要因を洗い出し、論理的な枠組みを用いて整理します。こうして見つかったイシューは、一貫した形で捉えることが求められます。 議論の軸は何? お客様との広告効果の振り返りや社内での議論の際は、必ずイシューを設定して取り組むように心がけます。会議中も常に、議論が当初設定したイシューからずれていないかを確認することが重要です。 論理展開は有効? もしイシューの特定で悩んだ場合は、ピラミッド・ストラクチャーを活用して、論理的に要素を分解してみるとよいでしょう。常に手法から入るのではなく、まずイシューとは何かを問い直すことが大切です。実際の会議においても、この姿勢を保つことが求められます。 日々の発想はどう変わる? また、日常生活においても、たとえばお昼ご飯の候補を複数(5つ以上)考えるなど、様々な分解のアプローチを意識することで、より柔軟な発想を培うことができます。

クリティカルシンキング入門

コツコツ学びが仕事を変える

学習時間はなぜ難しい? 今回の勉強は、以前のデータ分析の際とは異なり、毎朝コツコツと学ぶ時間を確保することが難しく、順調に進めることができませんでした。一方、実務で自然に意識していた内容が学びの一部に反映され、知識の整理に役立ちました。その結果、全体としては勉強になったと感じています。 グループ参加はどう感じる? また、グループワークへの参加については、後から参加したほうがよかったと反省しています。今後は、初めから積極的に関わることで、より多くの視点を取り入れたいと考えています。 問題の解決策は何だろう? さらに、問題解決に没頭してしまいがちな反省もあります。なぜその問題を解決する必要があるのか、根本的な問いを持つことに意識を向け、アプローチを見直すことが必要だと感じました。加えて、人に伝えることにまだ苦手意識があるため、伝え方の手法をさらに学び、業務に生かす努力を続けていきたいと思います。 知識はどう実践する? 前回受講したデータ分析の勉強と今回の学びを組み合わせ、より深い知識として業務に実践していくつもりです。今後も、言いたいことを明確にする思考法や伝え方の訓練を続け、日々の業務に活かしていきたいと考えています。

戦略思考入門

目的を見極め戦略を磨く学び

目的設定はなぜ大事? 目的を明確に持つことは重要です。目標がなければ、その後の戦略や行動がずれてしまう可能性があります。そのため、目的を明確にすることが大切です。また、戦略や戦術で迷ったときは、目的に立ち戻り再度整合性を確認すると良いでしょう。そして、視座を上げることも大切です。具現化する際、時折全体の目線で確認し、対局を見るように心がけることが重要です。 どうして優先順位決め? 新規顧客の開拓や組織風土を含む多くの組織課題の中でも、優先順を決めて取り組むことが必要です。特に優先度の高い課題から対応していくことが効果的です。追加で入る業務については、本当に必要なのか、その業務目的を確認することが求められます。ルーティンワークが多い場合でも、課題解決を積極的に進めるようにしましょう。 価値創出はどうする? 価値を生むことに目を向け、課題を適切に抽出する目を養うことが大切です。毎週ひとつの課題を取り上げて解決に取り組むようにしましょう。新しい課題については、まずフレームワークで対応できるかを調査し、フレームワークを使う習慣をつけることが有益です。また、関係者に説明する際には、情報を整理してわかりやすく伝えるように心がけましょう。

クリティカルシンキング入門

問題解決の鍵を握る問いの磨き方

どんな問いから始める? 問いは何かということからスタートする重要性を学びました。どのような問いに答えるために分析を行うのか、その目的を確認することから始める必要があると感じました。この際、問いの妥当性を確認するために、MECEになっているか、視座・視点・視野に偏りがないかなどのポイントを自分でチェックすることが重要だと考えました。 なぜギャップが生じる? 現状の業務における課題としては、私の担当する台湾・香港エリアでの販売台数の低下に起因する過剰在庫問題があります。目指すべき目的は、不動在庫の消化および在庫レベルの適正化ですが、販売が思うように進まず、指標に対してギャップが生じています。このギャップを埋めるために、なぜ現状のギャップが発生しているのかを分析する必要があります。具体的には、カテゴリや客先別に切り分けて、予測と実績のギャップを把握し、それを要因別に分けて考えるという手順を踏みます。 何のためにデータを集める? データ収集については、その前に何のためにデータが必要であるかをしっかり考えてから行動に移します。そして、分析を行った結果をチームや販売拠点の営業メンバーに共有し、具体的な対策を検討することが重要です。

戦略思考入門

戦略的選択で未来を創る

ゴールはどう決める? 戦略的思考という言葉を明確に言語化できてはいなかったものの、学習を通してその理解が深まりました。特に、「やるべきこと」と「やらなくてもよいこと」を選別する重要性を実感しています。問題が山積している状況ではあれもこれも手をつけたくなりますが、まずはゴールを明確に設定し、現時点で本当に必要なものを絞り込むことが効果的だと感じました。 事業課題はどう整理? また、所属する事業全体の課題設定と対策立案においても、この戦略的思考が大いに役立つと考えています。事業全体になると対象も広がり、解決すべき課題が多いため、あえてゴールを決め、取るべき行動を選別することで、最短かつ最速で理想の事業状態に近づけると期待しています。今後は、担当業務の範囲を超えた広い視野で戦略思考をどんどん活用していきたいと思います。 未来設計はどう進む? さらに、事業全体の課題と対策を自分なりに整理し、上司と意見交換を行いたいと考えています。そのため、事業の今後3年の理想像を、定量的・定性的な面から明確にし、現状とのギャップをもとに課題を洗い出す予定です。学んださまざまなフレームワークや手法を、実際の業務に積極的に活かしていきたいと思います。

データ・アナリティクス入門

仮説×検証で広がる未来

仮説と検証はどう? 問題解決の4つのステップの一環である原因の分析について、まず、原因を突き止めるためには仮説を立て、その仮説を実際に検証する必要があります。この検証のために必要なデータを収集し、フレームワークなどを用いて多角的な切り口からデータを引き出すことが大切です。また、解決策の一つとして、WEB上での施策検証に適したA/Bテストが有効です。 データ設計の秘訣は? さらに、現在の課題に必要なデータをどのように設計するかという視点を持つことも重要です。たとえば、共に仕事をするメンバーや経営層に対して、データに基づく裏付けがきちんと説明できるようにすることや、判断を求められた際に感覚的な決断ではなく、しっかりと分析した上で判断できるかどうかを見極める力が求められます。 経験共有の意義は? 皆さんには、業務上で判断に困ったとき、どのようなデータ分析を行って助かったか、あるいは失敗した経験について共有していただきたいと思います。また、最後の最後には勢いも必要ですが、どの程度の分析を行えば十分なのか、自分自身が満足するまで分析すべきか、あるいはどのような基準を持つべきかについて、みなさんと議論してみたいと考えています。

データ・アナリティクス入門

データから見る解決のヒント

問題解決ってどうする? 問題解決の手順を踏む中で、まずは「what(問題の明確化)」「where(問題箇所の特定)」「why(原因の分析)」「how(解決策の立案)」のステップを順に進めることが重要だと再認識しました。原因の仮説を立てるためにはデータ収集が不可欠で、仮説は単に立てるだけでなく、フレームワークを活用して幅広い視点から検討することで有用性が広がると感じました。その際、決め打ちせずにまずは自由に思考を発散させることも大切です。 数字から見える真実は? また、現時点では具体的な数字は得られていないものの、例えば事務処理に関しては実際の受付件数、処理件数、処理できなかった件数、人員数などのデータをまず取得し、そこから何が見えてくるかを仮説として立ててみたいと考えています。ただ「件数が増えているから忙しい、人手不足が原因だ」という決め付けに陥らず、複数の視点で状況を検討する必要性を感じています。 具体的な例には触れませんが、まずは上記のデータを確実に収集することが先決です。その上で、今回の問題解決のステップに沿って、場合によってはフレームワークの活用も検討しつつ、少なくとも複数の仮説を提示できるようにしたいと思います。

データ・アナリティクス入門

仮説が拓く学びの扉

仮説の基本って何? 仮説とは、論点や不明点に対する仮の答えを示すものであり、結論の仮説はある論点に対する仮の答え、問題解決の仮説は具体的な問題を解決するための仮の答えとなります。これらは時間軸に沿って中身が変化する点に注意が必要です。 複数仮説は必要? また、仮説は複数立てるべきものであり、決め打ちするのではなく、異なる切り口から幅広く考えることが求められます。仮説同士には網羅性を持たせ、あらゆる視点からの検討を行うことが大切です。 どの指標を選ぶ? 比較するためには、何を比較の指標とするかを意識的に選びながらデータを収集することが必要です。具体的な比較対象を定めることで、より精度の高い検証が可能になります。 仮説で解決できる? また、問題解決の場面では仮説が重要な役割を果たします。例えば、ある商品の売上が伸び悩んでいる場合、新規顧客獲得のためのさまざまな仮説を元に幅広いデータを収集し、その中から最適な答えを探し出すといった方法が考えられます。 なぜ仮説が求められる? 仮説が求められる場面とは、論点や問題が複雑で一律の答えを出しにくい場合や、現状の状況を打破するために新たな視点が必要な時と言えるでしょう。

クリティカルシンキング入門

対話で広がる新たな学び

学びをどう振り返る? 全体を振り返る最終週には、これまで積み重ねてきた学びを改めて確認する機会となりました。他者の意見を聞くことで、別の角度からの気づきが得られ、自分の考えを見直すきっかけにもなりました。 思考の癖を認識する? また、クリティカルシンキングの学習を通して、自分自身に批判的に向き合い、普段見落としがちな思考の癖を再認識する機会となりました。自分を客観的に見ることで、以前忘れていた大切な視点を取り戻すことができたと感じています。 意見交換はなぜ大切? この内容は、社内外のディスカッションや顧客課題の抽出、後輩との1on1や新卒採用面談といった様々な場面で活かすことができると実感しました。まず、自分の意見を簡潔に、かつ根拠を示しながら伝え、同時に他者の意見も取り入れることで、初期の考えを柔軟に見直すことが重要です。 イシューをどう見定める? さらに、課題解決に飛びつく前に、最初に適切なイシューを設定し、様々な角度から問題を深堀りする姿勢が求められます。自分の視点だけでなく、相手の立場にも立つことで、多角的な捉え方を意識しながら、設定したイシューを常に共有していくことの大切さを学びました。

データ・アナリティクス入門

ロジックが導く理想の一歩

講義の4ステップとは? 今回の講義では、問題解決の基本となる「明確化、特定、分析、立案」の4ステップを学びました。現状とあるべき姿の違いを、数字で具体的に示すことの重要性も理解できました。また、分析手法としてロジックツリーや層別分解、変数分解、そして「もれなく、ダブりなく」というMECEの概念にも触れ、今後の実務での応用を意識するようになりました。 タブロー普及策は? タブローの導入にあたっては、社内での普及方法について考える必要があります。タブローは主に営業部門と管理部門で利用される予定ですが、現状では初期導入段階のため、タブローの知識やスキルを持つ人材が不足しています。そのため、どのように準備を進め、短期間で必要な教育を実施するかが課題となっています。 実務に生かすには? BI分析やデータ可視化の取り組みを進める中で、理解を深めるためには計画的な学習やスキルの向上が不可欠です。講義で学んだプロセスをもとに、現状とあるべき姿をどのように区分し、具体的な対策を立案するかのイメージが湧いてきたと感じています。しかし、仕事の現状と理想の状態を明確に区分する点については、まだ少し分かりにくいという実感もあります。

データ・アナリティクス入門

ロジックで読み解く問題の核心

問題解決の流れは? 問題解決のステップは、まず「何が問題なのか」を明確にすることから始まります。具体的には、1.何が問題なのか?(What) 2.どこに問題があるのか?(Where) 3.何故問題が起きているのか?(Why) 4.どのように解決するのか?(How)の流れで整理されます。 現状と理想はどう違う? また、現状とあるべき姿や望ましい状態とのギャップを数値化することで、問題の大きさや具体性を把握しやすくなります。これにより、課題解決への道筋がより明確になると思います。 ロジックツリーは何故有用? さらに、問題分析の手法としてロジックツリーを活用するメリットは大きいですが、その際には感度の良い切り口を持つことが求められます。この感度の良い切り口とは、問題の細部に至るまで無駄なく、かつ重複なく整理するための視点であり、身につけるのが難しい部分でもあります。 経理作業は何を伝える? 最後に、毎月の経理や財務のまとめ作業を通じて、数値から様々な問題点や疑問点が浮かび上がることを実感しています。そこで、今回学んだMECEの考え方を取り入れ、ロジックツリーを用いてこれらの問題を体系的に分析していきたいと考えました。
AIコーチング導線バナー

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right